

 Navigation

 	
 index

 	
 next |

 	LOOT API latest documentation »

LOOT API

API Documentation

	Introduction

	Miscellaneous Details
	String Encoding

	Language Codes

	Errors

	Metadata Files

	Caching

	Performance

	LOOT’s Sorting Algorithm
	Load plugin data

	Create plugin graph vertices

	Create plugin graph edges

	Topologically sort the plugin graph

	API Reference
	Enumerations

	Public-Field Data Structures

	Functions

	Interfaces

	Classes

	Exceptions

	Error Categories

	Credits

	Version History
	0.13.7 - 2018-09-10

	0.13.6 - 2018-06-29

	0.13.5 - 2018-06-02

	0.13.4 - 2018-06-02

	0.13.3 - 2018-05-26

	0.13.2 - 2018-04-29

	0.13.1 - 2018-04-09

	0.13.0 - 2018-04-02

	0.12.5 - 2018-02-17

	0.12.4 - 2018-02-17

	0.12.3 - 2018-02-04

	0.12.2 - 2017-12-24

	0.12.1 - 2017-11-23

	0.12.0 - 2017-11-03

	0.11.1 - 2017-06-19

	0.11.0 - 2017-05-13

	0.10.3 - 2017-01-08

	0.10.2 - 2016-12-03

	0.10.1 - 2016-11-12

	0.10.0 - 2016-11-06

	0.9.2 - 2016-08-03

	0.9.1 - 2016-06-23

	0.9.0 - 2016-05-21

	0.8.1 - 2015-09-27

	0.8.0 - 2015-07-22

	0.7.1 - 2015-06-22

	0.7.0 - 2015-05-20

Metadata Syntax Documentation

	Introduction

	Metadata File Structure
	Example

	Data Structures
	Tag

	File

	Group

	Localised Content

	Message

	Location

	Cleaning Data

	Plugin

	Condition Strings
	Types

	Functions

	Logical Operators

	Performance

	Version History
	0.13

	0.10 - 2016-11-06

	0.8 - 2015-07-22

	0.7 - 2015-05-20

	0.6 - 2014-07-05

	0.5 - 2014-03-31

Copyright Licenses

	Copyright Notice

	Copyright License Texts
	Boost

	libgit2

	LOOT API, Libespm & Libloadorder

	LOOT API Documentation

	Pseudosem

	yaml-cpp

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Introduction

LOOT is a utility that helps users avoid serious conflicts between their mods by
setting their plugins in an optimal load order. It also provides tens of
thousands of plugin-specific messages, including usage notes, requirements,
incompatibilities, bug warnings and installation mistake notifications, and
thousands of Bash Tag suggestions.

This metadata that LOOT supplies is stored in its masterlist, which is
maintained by the LOOT team using information provided by mod authors and users.
Users can also add to and modify the metadata used by LOOT through the use of
userlist files. The LOOT API provides a way for third-party developers to access
this metadata for use in their own programs.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Miscellaneous Details

String Encoding

	All output strings are encoded in UTF-8.

	Metadata files are written encoded in UTF-8.

	Input strings are expected to be encoded in UTF-8.

	Metadata files read are expected to be encoded in UTF-8.

	File paths are case-sensitive if and only if the underlying file system is
case-sensitive.

Language Codes

All language strings in the API are codes of the form ll or ll_CC, where ll is an ISO 639-1 language code and CC is an ISO 3166 country code. For example, the default language for metadata message content is English, identified by the code en, and Brazilian Portuguese is pt_BR.

Errors

All errors encountered are thrown as exceptions that inherit from
std::exception.

Metadata Files

LOOT stores plugin metadata in YAML files. It distinguishes between masterlist
and userlist files: each game has a single masterlist, which is a public,
curated metadata store, and each LOOT user has a private userlist, which can
contain metadata added by the user. The two files use the same syntax, but
metadata in the userlist extends or replaces metadata sourced from the
masterlist.

LOOT’s plugin metadata can be conditional, eg. a plugin may require a patch only
if another plugin is also present. The API’s LoadLists() method parses
metadata files into memory, but does not evaluate these conditions, so the
loaded metadata may contain metadata that is invalid for the installed game that
the loot::DatabaseInterface object being operated on was created for.

Caching

All unevaluated metadata is cached between calls to LoadLists().

Plugin content is cached between calls to LoadPlugins() and
SortPlugins().

Load order is cached between calls to LoadPlugins(),
SortPlugins() and LoadCurrentLoadOrderState().

Performance

Loading metadata lists is a relatively costly operation, as is updating the
masterlist (which involves loading it).

Sorting plugins is expensive, as it involves loading all the FormIDs for all
the plugins, apart from the game’s main master file, which is skipped as an
optimisation (it doesn’t depend on anything else and is much bigger than any
other plugin, so is unnecessary and slow to load).

Getting plugin metadata once loaded is cheap, as is getting a masterlist’s
revision.

Loading the current load order state is relatively cheap and can take < 1 ms
depending on hardware and the size of the load order, but involves filesystem
access and should not be done more often than necessary to avoid a performance
impact.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

LOOT’s Sorting Algorithm

LOOT’s sorting algorithm consists of four stages:

	Load plugin data

	Create plugin graph vertices

	Create plugin graph edges

	Topologically sort the plugin graph

Load plugin data

In this first stage, the plugins to be sorted are parsed and their FormIDs
stored. Parsing is multithreaded by dividing the plugins into buckets with
roughly equal total file sizes, and loading each bucket’s plugins in a separate
thread. The number of buckets created is equal to the number of concurrent
threads that are hardware-supported (e.g. a dual-core CPU without hyperthreading
may report that it supports two threads).

When parsing plugins, all subrecords are skipped over for efficiency, apart from
the subrecords of the TES4 header record.

Create plugin graph vertices

Once loaded, a directed graph is created and the plugins are added to it in
lexicographical order as vertices. Any metadata a plugin has in the masterlist
and userlist are then merged into its vertex’s data store. Plugin group
dependencies are also resolved and added as group-derived plugins.

Create plugin graph edges

In this section, the terms vertex and plugin are used interchangeably, and
the iteration order ‘for each plugin’ is the order in which the vertices were
added to the graph.

For each plugin:

	If the plugin is a master file, add edges going to all non-master files. If
the plugin is a non-master file, add edges coming from all master files.

	Add edges coming from all the plugin’s masters. Missing masters have no edges
added.

	Add edges coming from all the plugin’s requirements. Missing requirements
have no edges added.

	Add edges coming from all the plugin’s load after files that are installed
plugins.

Group-derived interdependencies are then evaluated. Each plugin’s group-derived
plugins are iterated over and individually checked to see if adding an edge from
the group-derived plugin to the plugin would cause a cycle, and if not the edge
is recorded. Once all potential edges have been checked, the recorded edges are
added to the graph.

Plugin overlap edges are then added. Two plugins overlap if they contain the
same FormID, i.e. if they both edit the same record or if one edits a record the
other plugin adds.

For each plugin, skip it if it overrides no records, otherwise iterate over all
other plugins.

	If the plugin and other plugin override the same number of records, or do not
overlap, skip the other plugin.

	Otherwise, add an edge from the plugin which overrides more records to the
plugin that overrides fewer records, unless that edge would cause a cycle.

Finally, tie-break edges are added to ensure that sorting is consistent. For
each plugin, iterate over all other plugins and add an edge between each pair of
plugins in the direction given by the tie-break comparison function, unless that
edge would cause a cycle.

The tie-break comparison function compares current plugin load order positions,
falling back to plugin names.

	If both plugins have positions in the current load order, the function
preserves their existing relative order.

	If one plugin has a position and the other does not, the edge added goes from
the plugin with a position to the plugin without a position.

	If neither plugin has a load order position, a case-insensitive
lexicographical comparison of their filenames without file extensions is used
to decide their order.

Topologically sort the plugin graph

Note that edges for explicit interdependencies are the only edges allowed to
create cycles: this is because the first step of this stage is to check the
plugin graph for cycles, and throw an error if any are encountered, so that
metadata (or indeed plugin data) that cause them can be corrected.

Once the graph is confirmed to be cycle-free, a topological sort is performed on
the graph, outputting a list of plugins in their newly-sorted load order.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

API Reference

Contents

	API Reference
	Enumerations

	Public-Field Data Structures

	Functions

	Interfaces

	Classes

	Exceptions

	Error Categories

Enumerations

	
enum loot::GameType

	Codes used to create database handles for specific games.

Values:

	
tes4

	The Elder Scrolls IV: Oblivion

	
tes5

	The Elder Scrolls V: Skyrim

	
fo3

	Fallout 3

	
fonv

	Fallout: New Vegas

	
fo4

	Fallout 4

	
tes5se

	The Elder Scrolls V: Skyrim Special Edition

	
fo4vr

	Fallout 4 VR

	
tes5vr

	Skyrim VR

	
enum loot::LogLevel

	Codes used to specify different levels of API logging.

Values:

	
trace

	

	
debug

	

	
info

	

	
warning

	

	
error

	

	
fatal

	

	
enum loot::MessageType

	Codes used to indicate the type of a message.

Values:

	
say

	A notification message that is of no significant severity.

	
warn

	A warning message, used to indicate that an issue may be present that the user may wish to act on.

	
error

	An error message, used to indicate that an issue that requires user action is present.

Public-Field Data Structures

	
struct MasterlistInfo

	A structure that holds data about a masterlist’s source control revision.

Public Members

	
std::string revision_id

	The revision hash for the masterlist. If the masterlist doesn’t exist, or there is no Git repository at its location, this will be empty.

	
std::string revision_date

	A pointer to a string containing the ISO 8601 formatted revision date, ie. YYYY-MM-DD. If the masterlist doesn’t exist, or there is no Git repository at its location, this will be empty.

	
bool is_modified

	true if the masterlist has been edited since the outputted revision, or false if it is at exactly the revision given.

	
struct SimpleMessage

	A structure that holds the type of a message and the message string itself.

Public Members

	
MessageType type

	The type of the message.

	
std::string language

	The language the message string is written in.

	
std::string text

	The message string, which may be formatted using GitHub Flavored Markdown [https://help.github.com/articles/github-flavored-markdown].

	
std::string condition

	The message’s condition string.

Functions

	
void loot::SetLoggingCallback(std::function<void(LogLevel, const char *)> callback)

	Set the callback function that is called when logging.

If this function is not called, the default behaviour is to print messages to the console.
	Parameters

	
	callback: The function called when logging. The first parameter is the level of the message being logged, and the second is the message.

	
bool loot::IsCompatible(const unsigned int major, const unsigned int minor, const unsigned int patch)

	Checks for API compatibility.

Checks whether the loaded API is compatible with the given version of the API, abstracting API stability policy away from clients. The version numbering used is major.minor.patch.
	Return

	True if the API versions are compatible, false otherwise.

	Parameters

	
	major: The major version number to check.

	minor: The minor version number to check.

	patch: The patch version number to check.

	
void loot::InitialiseLocale(const std::string &id = "")

	Initialise the current global locale using the given ID.

This sets the global locale up so that the library’s UTF-8 support can function.
	Parameters

	
	id: A locale ID. The default value is a blank string, which will use the system default locale.

	
std::shared_ptr<GameInterface> loot::CreateGameHandle(const GameType game, const std::string &game_path, const std::string &game_local_path = "")

	Initialise a new game handle.

Creates a handle for a game, which is then used by all game-specific functions.
	Return

	The new game handle.

	Parameters

	
	game: A game code for which to create the handle.

	game_path: The relative or absolute path to the directory containing the game’s executable.

	game_local_path: The relative or absolute path to the game’s folder in %LOCALAPPDATA% or an empty string. If an empty string, the API will attempt to look up the path that %LOCALAPPDATA% corresponds to. This parameter is provided so that systems lacking that environmental variable (eg. Linux) can still use the API.

Interfaces

	
class DatabaseInterface

	The interface provided by API’s database handle.

Data Reading & Writing

	
virtual void LoadLists(const std::string &masterlist_path, const std::string &userlist_path = "") = 0

	Loads the masterlist and userlist from the paths specified.

Can be called multiple times, each time replacing the previously-loaded data.
	Parameters

	
	masterlist_path: A string containing the relative or absolute path to the masterlist file that should be loaded.

	userlist_path: A string containing the relative or absolute path to the userlist file that should be loaded, or an empty string. If an empty string, no userlist will be loaded.

	
virtual void WriteUserMetadata(const std::string &outputFile, const bool overwrite) const = 0

	Writes a metadata file containing all loaded user-added metadata.
	Parameters

	
	outputFile: The path to which the file shall be written.

	overwrite: If false and outputFile already exists, no data will be written. Otherwise, data will be written.

	
virtual void WriteMinimalList(const std::string &outputFile, const bool overwrite) const = 0

	Writes a minimal metadata file that only contains plugins with Bash Tag suggestions and/or dirty info, plus the suggestions and info themselves.

	Parameters

	
	outputFile: The path to which the file shall be written.

	overwrite: If false and outputFile already exists, no data will be written. Otherwise, data will be written.

Masterlist Update

	
virtual bool UpdateMasterlist(const std::string &masterlist_path, const std::string &remote_url, const std::string &remote_branch) = 0

	Update the given masterlist.

Uses Git to update the given masterlist to a given remote. If the masterlist doesn’t exist, this will create it. This function also initialises a Git repository in the given masterlist’s parent folder. If the masterlist was not already up-to-date, it will be re-loaded, but not re-evaluated.

If a Git repository is already present, it will be used to perform a diff-only update, but if for any reason a fast-forward merge update is not possible, the existing repository will be deleted and a new repository cloned from the given remote.
	Return

	true if the masterlist was updated. false if no update was necessary, ie. it was already up-to-date. If true, the masterlist will have been re-loaded, but will need to be re-evaluated separately.

	Parameters

	
	masterlist_path: A string containing the relative or absolute path to the masterlist file that should be updated. The filename must match the filename of the masterlist file in the given remote repository, otherwise it will not be updated correctly. Although LOOT itself expects this filename to be “masterlist.yaml”, the API does not check for any specific filename.

	remote_url: The URL of the remote from which to fetch updates. This can also be a relative or absolute path to a local repository.

	remote_branch: The branch of the remote from which to apply updates. LOOT’s official masterlists are versioned using separate branches for each new version of the masterlist syntax, so if you’re using them, check their repositories to see which is the latest release branch.

	
virtual MasterlistInfo GetMasterlistRevision(const std::string &masterlist_path, const bool get_short_id) const = 0

	Get the given masterlist’s revision.

Getting a masterlist’s revision is only possible if it is found inside a local Git repository.
	Return

	The revision data.

	Parameters

	
	masterlist_path: A string containing the relative or absolute path to the masterlist file that should be queried.

	get_short_id: If true, the shortest unique hexadecimal revision hash that is at least 7 characters long will be outputted. Otherwise, the full 40 character hash will be outputted.

	
virtual bool IsLatestMasterlist(const std::string &masterlist_path, const std::string &branch) const = 0

	Check if the given masterlist is the latest available for a given branch.
	Return

	True if the masterlist revision matches the latest masterlist revision for the given branch, and false otherwise.

	Parameters

	
	masterlist_path: A string containing the relative or absolute path to the masterlist file for which the latest revision should be obtained. It needs to be in a local Git repository.

	branch: The branch to check against.

Non-plugin Data Access

	
virtual std::set<std::string> GetKnownBashTags() const = 0

	Gets the Bash Tags that are listed in the loaded metadata lists.

Bash Tag suggestions can include plugins not in this list.
	Return

	A set of Bash Tag names.

	
virtual std::vector<Message> GetGeneralMessages(bool evaluateConditions = false) const = 0

	Get all general messages listen in the loaded metadata lists.

	Return

	A vector of messages supplied in the metadata lists but not attached to any particular plugin.

	Parameters

	
	evaluateConditions: If true, any metadata conditions are evaluated before the metadata is returned, otherwise unevaluated metadata is returned. Evaluating general message conditions also clears the condition cache before evaluating conditions.

	
virtual std::unordered_set<Group> GetGroups(bool includeUserMetadata = true) const = 0

	Gets the groups that are defined in the loaded metadata lists.

	Return

	An unordered set of Group objects.

	Parameters

	
	includeUserMetadata: If true, any group metadata present in the userlist is included in the returned metadata, otherwise the metadata returned only includes metadata from the masterlist.

	
virtual std::unordered_set<Group> GetUserGroups() const = 0

	Gets the groups that are defined or extended in the loaded userlist.

	Return

	An unordered set of Group objects.

	
virtual void SetUserGroups(const std::unordered_set<Group> &groups) = 0

	Sets the group definitions to store in the userlist, overwriting any existing definitions there.

	Parameters

	
	groups: The unordered set of Group objects to set.

Plugin Data Access

	
virtual PluginMetadata GetPluginMetadata(const std::string &plugin, bool includeUserMetadata = true, bool evaluateConditions = false) const = 0

	Get all a plugin’s loaded metadata.

	Return

	A PluginMetadata object containing all the plugin’s metadata. If the plugin has no metadata, PluginMetadata.IsNameOnly() will return true.

	Parameters

	
	plugin: The filename of the plugin to look up metadata for.

	includeUserMetadata: If true, any user metadata the plugin has is included in the returned metadata, otherwise the metadata returned only includes metadata from the masterlist.

	evaluateConditions: If true, any metadata conditions are evaluated before the metadata is returned, otherwise unevaluated metadata is returned. Evaluating plugin metadata conditions does not clear the condition cache.

	
virtual PluginMetadata GetPluginUserMetadata(const std::string &plugin, bool evaluateConditions = false) const = 0

	Get a plugin’s metadata loaded from the given userlist.

	Return

	A PluginMetadata object containing the plugin’s user-added metadata. If the plugin has no metadata, PluginMetadata.IsNameOnly() will return true.

	Parameters

	
	plugin: The filename of the plugin to look up user-added metadata for.

	evaluateConditions: If true, any metadata conditions are evaluated before the metadata is returned, otherwise unevaluated metadata is returned. Evaluating plugin metadata conditions does not clear the condition cache.

	
virtual void SetPluginUserMetadata(const PluginMetadata &pluginMetadata) = 0

	Sets a plugin’s user metadata, overwriting any existing user metadata.

	Parameters

	
	pluginMetadata: The user metadata you want to set, with plugin.Name() being the filename of the plugin the metadata is for.

	
virtual void DiscardPluginUserMetadata(const std::string &plugin) = 0

	Discards all loaded user metadata for the plugin with the given filename.

	Parameters

	
	plugin: The filename of the plugin for which all user-added metadata should be deleted.

	
virtual void DiscardAllUserMetadata() = 0

	Discards all loaded user metadata for all plugins, and any user-added general messages and known bash tags.

	
class GameInterface

	The interface provided for accessing game-specific functionality.

Metadata Access

	
virtual std::shared_ptr<DatabaseInterface> GetDatabase() = 0

	Get the database interface used for accessing metadata-related functionality.

	Return

	A shared pointer to the game’s DatabaseInterface

Plugin Data Access

	
virtual bool IsValidPlugin(const std::string &plugin) const = 0

	Check if a file is a valid plugin.

The validity check is not exhaustive: it checks that the file extension is .esm or .esp (after trimming any .ghost extension), and that the TES4 header can be parsed.
	Return

	True if the file is a valid plugin, false otherwise.

	Parameters

	
	plugin: The filename of the file to check.

	
virtual void LoadPlugins(const std::vector<std::string> &plugins, bool loadHeadersOnly) = 0

	Parses plugins and loads their data.

Any previously-loaded plugin data is discarded when this function is called.
	Parameters

	
	plugins: The filenames of the plugins to load.

	loadHeadersOnly: If true, only the plugins’ TES4 headers are loaded. If false, all records in the plugins are parsed, apart from the main master file if it has been identified by a previous call to IdentifyMainMasterFile().

	
virtual std::shared_ptr<const PluginInterface> GetPlugin(const std::string &pluginName) const = 0

	Get data for a loaded plugin.

Throws an exception if the given plugin has not been loaded.
	Return

	A const PluginInterface reference. The reference remains valid until the LoadPlugins() or SortPlugins() functions are next called or this GameInterface is destroyed.

	Parameters

	
	pluginName: The filename of the plugin to get data for.

	
virtual std::set<std::shared_ptr<const PluginInterface>> GetLoadedPlugins() const = 0

	Get a set of const references to all loaded plugins’ PluginInterface objects.

	Return

	A set of const PluginInterface references. The references remain valid until the LoadPlugins() or SortPlugins() functions are next called or this GameInterface is destroyed.

Sorting

	
virtual void IdentifyMainMasterFile(const std::string &masterFile) = 0

	Identify the game’s main master file.

When sorting, LOOT always only loads the headers of the game’s main master file as a performance optimisation.

	
virtual std::vector<std::string> SortPlugins(const std::vector<std::string> &plugins) = 0

	Calculates a new load order for the game’s installed plugins (including inactive plugins) and outputs the sorted order.

Pulls metadata from the masterlist and userlist if they are loaded, and reads the contents of each plugin. No changes are applied to the load order used by the game. This function does not load or evaluate the masterlist or userlist.
	Return

	A vector of the given plugin filenames in their sorted load order.

	Parameters

	
	plugins: A vector of filenames of the plugins to sort.

Load Order Interaction

	
virtual void LoadCurrentLoadOrderState() = 0

	Load the current load order state, discarding any previously held state.

This function should be called whenever the load order or active state of plugins “on disk” changes, so that the cached state is updated to reflect the changes.

	
virtual bool IsPluginActive(const std::string &plugin) const = 0

	Check if a plugin is active.

	Return

	True if the plugin is active, false otherwise.

	Parameters

	
	plugin: The filename of the plugin for which to check the active state.

	
virtual std::vector<std::string> GetLoadOrder() const = 0

	Get the current load order.

	Return

	A vector of plugin filenames in their load order.

	
virtual void SetLoadOrder(const std::vector<std::string> &loadOrder) = 0

	Set the game’s load order.

	Parameters

	
	loadOrder: A vector of plugin filenames sorted in the load order to set.

	
class PluginInterface

	Represents a plugin file that has been parsed by LOOT.

Public Functions

	
virtual std::string GetName() const = 0

	Get the plugin’s filename.
	Return

	The plugin filename.

	
virtual std::string GetLowercasedName() const = 0

	Get the plugin’s filename in lowercase characters.
	Return

	The lowercased plugin filename.

	
virtual std::string GetVersion() const = 0

	Get the plugin’s version number from its description field.

If no version number is found in the description field, an empty string is returned. The description field parsing may fail to extract the version number correctly, though it functions correctly in all known cases.
	Return

	A string containing a version number, or an empty string.

	
virtual std::vector<std::string> GetMasters() const = 0

	Get the plugin’s masters.
	Return

	The plugin’s masters in the same order they are listed in the file.

	
virtual std::set<Tag> GetBashTags() const = 0

	Get any Bash Tags found in the plugin’s description field.
	Return

	A set of Bash Tags. The order of elements in the set holds no semantics.

	
virtual uint32_t GetCRC() const = 0

	Get the plugin’s CRC-32 checksum.
	Return

	The plugin’s CRC-32 checksum if it has been fully read. If only the plugin’s header has been read, 0 will be returned.

	
virtual bool IsMaster() const = 0

	Check if the plugin’s master flag is set.
	Return

	True if the master flag is set, false otherwise.

	
virtual bool IsLightMaster() const = 0

	Check if the plugin is a light master.
	Return

	True if plugin is a light master, false otherwise.

	
virtual bool IsEmpty() const = 0

	Check if the plugin contains any records other than its TES4 header.
	Return

	True if the plugin only contains a TES4 header, false otherwise.

	
virtual bool LoadsArchive() const = 0

	Check if the plugin loads an archive (BSA/BA2 depending on the game).
	Return

	True if the plugin loads an archive, false otherwise.

	
virtual bool DoFormIDsOverlap(const PluginInterface &plugin) const = 0

	Check if two plugins contain records for the same FormIDs.
	Return

	True if the plugins both contain at least one record with the same FormID, false otherwise.

	Parameters

	
	plugin: The other plugin to check for FormID overlap with.

Classes

	
class ConditionalMetadata

	A base class for metadata that can be conditional based on the result of evaluating a condition string.

Subclassed by File, Message, Tag

Public Functions

	
ConditionalMetadata()

	Construct a ConditionalMetadata object with an empty condition string.
	Return

	A ConditionalMetadata object.

	
ConditionalMetadata(const std::string &condition)

	Construct a ConditionalMetadata object with a given condition string.
	Return

	A ConditionalMetadata object.

	Parameters

	
	condition: A condition string, as defined in the LOOT metadata syntax documentation.

	
bool IsConditional() const

	Check if the condition string is non-empty.
	Return

	True if the condition string is not empty, false otherwise.

	
void ParseCondition() const

	Check if the condition string is syntactically valid.

Throws a ConditionSyntaxError if the condition string’s syntax is not valid.

	
std::string GetCondition() const

	Get the condition string.
	Return

	The object’s condition string.

	
class File : public ConditionalMetadata

	Represents a file in a game’s Data folder, including files in subdirectories.

Public Functions

	
File()

	Construct a File with blank name, display and condition strings.
	Return

	A File object.

	
File(const std::string &name, const std::string &display = "", const std::string &condition = "")

	Construct a File with the given name, display name and condition strings.
	Return

	A File object.

	Parameters

	
	name: The filename of the file.

	display: The name to be displayed for the file in messages.

	condition: The File‘s condition string.

	
bool operator<(const File &rhs) const

	A less-than operator implemented with no semantics so that File objects can be stored in sets.
	Return

	True if this File‘s name is case-insensitively lexicographically less than the given File‘s name, false otherwise.

	
bool operator==(const File &rhs) const

	Check if two File objects are equal by comparing their filenames.
	Return

	True if the filenames are case-insensitively equal, false otherwise.

	
std::string GetName() const

	Get the filename of the file.
	Return

	The file’s filename.

	
std::string GetDisplayName() const

	Get the display name of the file.
	Return

	The file’s display name.

	
class Group

	Represents a group to which plugin metadata objects can belong.

Public Functions

	
Group()

	Construct a Group with the name “default” and an empty set of groups to load after.
	Return

	A Group object.

	
Group(const std::string &name)

	Construct a File with the given name and an empty set of groups to load after.
	Return

	A Group object.

	Parameters

	
	name: The group name.

	
Group(const std::string &name, const std::unordered_set<std::string> &afterGroups)

	Construct a File with the given name and set of groups to load after.
	Return

	A Group object.

	Parameters

	
	name: The group name.

	afterGroups: The names of groups this group loads after.

	
bool operator==(const Group &rhs) const

	Check if two Group objects are equal by comparing their names.
	Return

	True if the names are case-sensitively equal, false otherwise.

	
std::string GetName() const

	Get the name of the group.
	Return

	The group’s name.

	
std::unordered_set<std::string> GetAfterGroups() const

	Get the set of groups this group loads after.
	Return

	A set of group names.

	
class Location

	Represents a URL at which the parent plugin can be found.

Public Functions

	
Location()

	Construct a Location with empty URL and name strings.
	Return

	A Location object.

	
Location(const std::string &url, const std::string &name = "")

	Construct a Location with the given URL and name.
	Return

	A Location object.

	Parameters

	
	url: The URL at which the plugin can be found.

	name: A name for the URL, eg. the page or site name.

	
bool operator<(const Location &rhs) const

	A less-than operator implemented with no semantics so that Location objects can be stored in sets.
	Return

	True if this Location‘s URL is case-insensitively lexicographically less than the given Location‘s URL, false otherwise.

	
bool operator==(const Location &rhs) const

	Check if two Location objects are equal by comparing their URLs.
	Return

	True if the URLs are case-insensitively equal, false otherwise.

	
std::string GetURL() const

	Get the object’s URL.
	Return

	A URL string.

	
std::string GetName() const

	Get the object’s name.
	Return

	The name of the location.

	
class LootVersion

	A purely static class that provides information about the version of the LOOT API that is being run.

Public Static Functions

	
static std::string string()

	Get the API version as a string.

	Return

	A string of the form “major.minor.patch”.

Public Static Attributes

	
const unsigned int major

	The major version number.

	
const unsigned int minor

	The minor version number.

	
const unsigned int patch

	The patch version number.

	
const std::string revision

	The source control revision that the API was built from.

	
class MessageContent

	Represents a message’s localised text content.

Public Functions

	
MessageContent()

	Construct a MessageContent object with an empty English message string.
	Return

	A MessageContent object.

	
MessageContent(const std::string &text, const std::string &language = defaultLanguage)

	Construct a Message object with the given text in the given language.
	Return

	A MessageContent object.

	Parameters

	
	text: The message text.

	language: The language that the message is written in.

	
std::string GetText() const

	Get the message text.
	Return

	A string containing the message text.

	
std::string GetLanguage() const

	Get the message language.
	Return

	A code representing the language that the message is written in.

	
bool operator<(const MessageContent &rhs) const

	A less-than operator implemented with no semantics so that MessageContent objects can be stored in sets.
	Return

	True if this MessageContent‘s text is case-insensitively lexicographically less than the given MessageContent‘s text, false otherwise.

	
bool operator==(const MessageContent &rhs) const

	Check if two MessageContent objects are equal by comparing their texts.
	Return

	True if the texts are case-insensitively equal, false otherwise.

Public Static Functions

	
static MessageContent Choose(const std::vector<MessageContent> content, const std::string &language)

	Choose a MessageContent object from a vector given a language.
	Return

	A MessageContent object. If the given vector is empty, a default-constructed MessageContent is returned.

	Parameters

	
	content: The MessageContent objects to choose between.

	language: The language code for the preferred language to select. If no message in the preferred language is present, the English MessageContent will be returned.

Public Static Attributes

	
const std::string defaultLanguage

	The code for the default language assumed for message content, which is English.

	
class Message : public ConditionalMetadata

	Represents a message with localisable text content.

Public Functions

	
Message()

	Construct a Message object of type ‘say’ with blank content and condition strings.
	Return

	A Message object.

	
Message(const MessageType type, const std::string &content, const std::string &condition = "")

	Construct a Message object with the given type, English content and condition string.
	Return

	A Message object.

	Parameters

	
	type: The message type.

	content: The English message content text.

	condition: A condition string.

	
Message(const MessageType type, const std::vector<MessageContent> &content, const std::string &condition = "")

	Construct a Message object with the given type, content and condition string.
	Return

	A Message object.

	Parameters

	
	type: The message type.

	content: The message content. If multilingual, one language must be English.

	condition: A condition string.

	
bool operator<(const Message &rhs) const

	A less-than operator implemented with no semantics so that Message objects can be stored in sets.
	Return

	If both messages have content, returns true if this Message‘s English text is case-insensitively lexicographically less than the given Message‘s English text, and false otherwise. Otherwise returns true if this Message has no content, and false otherwise.

	
bool operator==(const Message &rhs) const

	Check if two Message objects are equal by comparing their content.
	Return

	True if the contents are equal, false otherwise.

	
MessageType GetType() const

	Get the message type.
	Return

	The message type.

	
std::vector<MessageContent> GetContent() const

	Get the message content.
	Return

	The message’s MessageContent objects.

	
MessageContent GetContent(const std::string &language) const

	Get the message content given a language.
	Return

	A MessageContent object for the preferred language, or for English if a MessageContent object is not available for the given language.

	Parameters

	
	language: The preferred language for the message content.

	
SimpleMessage ToSimpleMessage(const std::string &language) const

	Get the message as a SimpleMessage given a language.
	Return

	A SimpleMessage object for the preferred language, or for English if message text is not available for the given language.

	Parameters

	
	language: The preferred language for the message content.

	
class PluginCleaningData

	Represents data identifying the plugin under which it is stored as dirty or clean.

Public Functions

	
PluginCleaningData()

	Construct a PluginCleaningData object with zero CRC, ITM count, deleted reference count and deleted navmesh count values, an empty utility string and no info.
	Return

	A PluginCleaningData object.

	
PluginCleaningData(uint32_t crc, const std::string &utility)

	Construct a PluginCleaningData object with the given CRC and utility, zero ITM count, deleted reference count and deleted navmesh count values and no info.
	Return

	A PluginCleaningData object.

	Parameters

	
	crc: The CRC of a plugin.

	utility: The utility that the plugin cleanliness was checked with.

	
PluginCleaningData(uint32_t crc, const std::string &utility, const std::vector<MessageContent> &info, unsigned int itm, unsigned int ref, unsigned int nav)

	Construct a PluginCleaningData object with the given values.
	Return

	A PluginCleaningData object.

	Parameters

	
	crc: A clean or dirty plugin’s CRC.

	utility: The utility that the plugin cleanliness was checked with.

	info: A vector of localised information message strings about the plugin cleanliness.

	itm: The number of Identical To Master records found in the plugin.

	ref: The number of deleted references found in the plugin.

	nav: The number of deleted navmeshes found in the plugin.

	
bool operator<(const PluginCleaningData &rhs) const

	A less-than operator implemented with no semantics so that PluginCleaningData objects can be stored in sets.
	Return

	True if this PluginCleaningData‘s CRC is less than the given PluginCleaningData‘s CRC, false otherwise.

	
bool operator==(const PluginCleaningData &rhs) const

	Check if two PluginCleaningData objects are equal by comparing their CRCs.
	Return

	True if the CRCs are equal, false otherwise.

	
uint32_t GetCRC() const

	Get the CRC that identifies the plugin that the cleaning data is for.
	Return

	A CRC-32 checksum.

	
unsigned int GetITMCount() const

	Get the number of Identical To Master records in the plugin.
	Return

	The number of Identical To Master records in the plugin.

	
unsigned int GetDeletedReferenceCount() const

	Get the number of deleted references in the plugin.
	Return

	The number of deleted references in the plugin.

	
unsigned int GetDeletedNavmeshCount() const

	Get the number of deleted navmeshes in the plugin.
	Return

	The number of deleted navmeshes in the plugin.

	
std::string GetCleaningUtility() const

	Get the name of the cleaning utility that was used to check the plugin.
	Return

	A cleaning utility name, possibly related information such as a version number and/or a Markdown-formatted URL to the utility’s download location.

	
std::vector<MessageContent> GetInfo() const

	Get any additional informative message content supplied with the cleaning data, eg. a link to a cleaning guide or information on wild edits or manual cleaning steps.
	Return

	A vector of localised MessageContent objects.

	
MessageContent ChooseInfo(const std::string &language) const

	Choose an info MessageContent object given a preferred language.
	Return

	The MessageContent object for the preferred language, or if one does not exist, the English-language MessageContent object.

	Parameters

	
	language: The preferred language’s code.

	
class PluginMetadata

	Represents a plugin’s metadata.

Public Functions

	
PluginMetadata()

	Construct a PluginMetadata object with a blank plugin name and no metadata.
	Return

	A PluginMetadata object.

	
PluginMetadata(const std::string &name)

	Construct a PluginMetadata object with no metadata for a plugin with the given filename.
	Return

	A PluginMetadata object.

	Parameters

	
	name: The filename of the plugin that the object is constructed for.

	
void MergeMetadata(const PluginMetadata &plugin)

	Merge metadata from the given PluginMetadata object into this object.

If an equal metadata object already exists in this PluginMetadata object, it is not duplicated. This object’s enabled state is replaced by the given object’s state. This object’s group is replaced by the given object’s group if the latter is explicit.
	Parameters

	
	plugin: The plugin metadata to merge.

	
PluginMetadata NewMetadata(const PluginMetadata &plugin) const

	Get metadata in this object that isn’t present in the given PluginMetadata object.
	Return

	A PluginMetadata object containing the metadata in this object that is not in the given object. The returned object inherits this object’s enabled state and group.

	Parameters

	
	plugin: The PluginMetadata object to compare against.

	
std::string GetName() const

	Get the plugin name.
	Return

	The plugin name.

	
std::string GetLowercasedName() const

	Get the lowercased plugin name.
	Return

	The lowercased plugin name.

	
bool IsEnabled() const

	Check if the plugin metadata is enabled for use during sorting.
	Return

	True if the metadata will be used during sorting, false otherwise.

	
std::string GetGroup() const

	Get the plugin’s group.
	Return

	The name of the group this plugin belongs to.

	
bool IsGroupExplicit() const

	Check if the plugin’s group was set explicitly or if the default value was implied.
	Return

	True if the plugin’s group was set explicitly, false otherwise.

	
std::set<File> GetLoadAfterFiles() const

	Get the plugins that the plugin must load after.
	Return

	The plugins that the plugin must load after.

	
std::set<File> GetRequirements() const

	Get the files that the plugin requires to be installed.
	Return

	The files that the plugin requires to be installed.

	
std::set<File> GetIncompatibilities() const

	Get the files that the plugin is incompatible with.
	Return

	The files that the plugin is incompatible with.

	
std::vector<Message> GetMessages() const

	Get the plugin’s messages.
	Return

	The plugin’s messages.

	
std::set<Tag> GetTags() const

	Get the plugin’s Bash Tag suggestions.
	Return

	The plugin’s Bash Tag suggestions.

	
std::set<PluginCleaningData> GetDirtyInfo() const

	Get the plugin’s dirty plugin information.
	Return

	The PluginCleaningData objects that identify the plugin as dirty.

	
std::set<PluginCleaningData> GetCleanInfo() const

	Get the plugin’s clean plugin information.
	Return

	The PluginCleaningData objects that identify the plugin as clean.

	
std::set<Location> GetLocations() const

	Get the locations at which this plugin can be found.
	Return

	The locations at which this plugin can be found.

	
std::vector<SimpleMessage> GetSimpleMessages(const std::string &language) const

	Get the plugin’s messages as SimpleMessage objects for the given language.
	Return

	The plugin’s messages as SimpleMessage objects.

	Parameters

	
	language: The language to create the SimpleMessage objects for.

	
void SetEnabled(const bool enabled)

	Set whether the plugin metadata is enabled for use during sorting or not.
	Parameters

	
	enabled: The value to set.

	
void SetGroup(const std::string &group)

	Set the plugin’s group.
	Parameters

	
	group: The name of the group this plugin belongs to.

	
void SetLoadAfterFiles(const std::set<File> &after)

	Set the files that the plugin must load after.
	Parameters

	
	after: The files to set.

	
void SetRequirements(const std::set<File> &requirements)

	Set the files that the plugin requires to be installed.
	Parameters

	
	requirements: The files to set.

	
void SetIncompatibilities(const std::set<File> &incompatibilities)

	Set the files that the plugin must load after.
	Parameters

	
	incompatibilities: The files to set.

	
void SetMessages(const std::vector<Message> &messages)

	Set the plugin’s messages.
	Parameters

	
	messages: The messages to set.

	
void SetTags(const std::set<Tag> &tags)

	Set the plugin’s Bash Tag suggestions.
	Parameters

	
	tags: The Bash Tag suggestions to set.

	
void SetDirtyInfo(const std::set<PluginCleaningData> &info)

	Set the plugin’s dirty information.
	Parameters

	
	info: The dirty information to set.

	
void SetCleanInfo(const std::set<PluginCleaningData> &info)

	Set the plugin’s clean information.
	Parameters

	
	info: The clean information to set.

	
void SetLocations(const std::set<Location> &locations)

	Set the plugin’s locations.
	Parameters

	
	locations: The locations to set.

	
bool HasNameOnly() const

	Check if no plugin metadata is set.
	Return

	True if the group is implicit and the metadata containers are all empty, false otherwise.

	
bool IsRegexPlugin() const

	Check if the plugin name is a regular expression.
	Return

	True if the plugin name contains any of the characters :*?|, false otherwise.

	
bool operator==(const PluginMetadata &rhs) const

	Check if two PluginMetadata objects are equal by comparing their name values.
	Return

	True if the plugin names are case-insensitively equal, false otherwise.

	
bool operator!=(const PluginMetadata &rhs) const

	Check if two PluginMetadata objects are not equal by comparing their name values.
	Return

	True if the plugin names are not case-insensitively equal, false otherwise.

	
bool operator==(const std::string &rhs) const

	Check if object’s name value is equal to the given string.
	Return

	True if the plugin name is case-insensitively equal to the given string, false otherwise.

	
bool operator!=(const std::string &rhs) const

	Check if object’s name value is not equal to the given string.
	Return

	True if the plugin name is not case-insensitively equal to the given string, false otherwise.

	
class Tag : public ConditionalMetadata

	Represents a Bash Tag suggestion for a plugin.

Public Functions

	
Tag()

	Construct a Tag object with an empty tag name suggested for addition, with an empty condition string.
	Return

	A Tag object.

	
Tag(const std::string &tag, const bool isAddition = true, const std::string &condition = "")

	Construct a Tag object with the given name, for addition or removal, with the given condition string.
	Return

	A Tag object.

	Parameters

	
	tag: The name of the Bash Tag.

	isAddition: True if the tag should be added, false if it should be removed.

	condition: A condition string.

	
bool operator<(const Tag &rhs) const

	A less-than operator implemented with no semantics so that Tag objects can be stored in sets.
	Return

	True if this Tag is suggested for addition and the other is not. If both Tags are suggested for addition or both are suggested for removal, returns true if this Tag‘s name is case-insensitively lexicographically less than the given Tag‘s name, false otherwise.

	
bool operator==(const Tag &rhs) const

	Check if two Tag objects are equal.
	Return

	True if both Tags are suggested for addition or both are suggested for removal, and the Tag names are case-insensitively equal, false otherwise.

	
bool IsAddition() const

	Check if the tag should be added.
	Return

	True if the tag should be added, false if it should be removed.

	
std::string GetName() const

	Get the tag’s name.
	Return

	The tag’s name.

Exceptions

	
class CyclicInteractionError : public runtime_error

	An exception class thrown if a cyclic interaction is detected when sorting a load order.

Public Functions

	
CyclicInteractionError(const std::string &firstPlugin, const std::string &lastPlugin, const std::string &backCycle)

	Construct an exception detailing a plugin graph cycle.

	Parameters

	
	firstPlugin: A plugin in the cycle.

	lastPlugin: Another plugin in the cycle.

	backCycle: A string describing the path from lastPlugin to firstPlugin.

	
std::string getFirstPlugin()

	Get the first plugin in the chosen forward path of the cycle.
	Return

	A plugin filename.

	
std::string getLastPlugin()

	Get the first plugin in the chosen forward path of the cycle.
	Return

	A plugin filename.

	
std::string getBackCycle()

	Get a description of the reverse path from the chosen last plugin to the chosen first plugin of the cycle.
	Return

	A string describing a path between two plugins in the plugin graph.

	
class GitStateError : public logic_error

	An exception class thrown if an error occurs when performing an operation on a Git repository due to invalid state.

	
class ConditionSyntaxError : public runtime_error

	An exception class thrown if invalid syntax is encountered when parsing a metadata condition.

	
class FileAccessError : public runtime_error

	An exception class thrown if an error is encountered while reading or writing a file.

	
class UndefinedGroupError : public runtime_error

	An exception class thrown if group is referenced but is undefined.

Public Functions

	
UndefinedGroupError(const std::string &groupName)

	Construct an exception for an undefined group.

	Parameters

	
	groupName: The name of the group that is undefined.

	
std::string getGroupName()

	Get the name of the undefined group.
	Return

	A group name.

Error Categories

LOOT uses error category objects to identify errors with codes that originate in
lower-level libraries.

	
const std::error_category &loot::libloadorder_category()

	Get the error category that can be used to identify system_error exceptions that are due to libloadorder errors.

	Return

	A reference to the static object of unspecified runtime type, derived from std::error_category.

	
const std::error_category &loot::libgit2_category()

	Get the error category that can be used to identify system_error exceptions that are due to libgit2 errors.

	Return

	A reference to the static object of unspecified runtime type, derived from std::error_category.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Credits

The LOOT API is written by WrinklyNinja [https://github.com/WrinklyNinja] in C++ and makes use of the
Boost [http://www.boost.org/], libespm [https://github.com/WrinklyNinja/libespm], libgit2 [https://github.com/libgit2/libgit2], libloadorder [https://github.com/WrinklyNinja/libloadorder], Pseudosem [https://github.com/WrinklyNinja/pseudosem] and yaml-cpp [https://github.com/WrinklyNinja/yaml-cpp]
libraries. The copyright licenses for all of these and the LOOT API itself in
Copyright License Texts.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Version History

0.13.7 - 2018-09-10

Changed

	Significantly improve plugin loading performance by scanning for BSAs/BA2s
once instead of for each plugin.

	Improve performance of metadata evaluation by caching CRCs with the same
cache lifetime as condition results.

	Improve performance of sorting when it involves long plugin interaction
chains.

	Updated esplugin to v2.0.1.

	Updated libgit2 to v0.27.4.

	Updated libloadorder v11.4.1.

	Updated spdlog to v1.1.0.

	Updated yaml-cpp to 0.6.2+merge-key-support.2.

Fixed

	Fallout 4’s DLCUltraHighResolution.esm is now handled as a hardcoded plugin
(via libloadorder).

0.13.6 - 2018-06-29

Changed

	Tweaked masterlist repository cloning to avoid undefined behaviour.

	Updated Boost to v1.67.0.

	Updated esplugin to v2.0.0.

	Updated libgit2 to v0.27.2.

	Updated libloadorder to v11.4.0.

0.13.5 - 2018-06-02

Changed

	Sorting now enforces hardcoded plugin positions, sourcing them through
libloadorder. This avoids the need for often very verbose metadata entries,
particularly for Creation Club plugins.

	Updated libgit2 to v0.27.1. This includes a security fix for CVE-2018-11235,
but LOOT API’s usage is not susceptible. libgit2 is not susceptible to
CVE-2018-11233, another Git vulnerability which was published on the same day.

	Updated libloadorder to v11.3.0.

	Updated spdlog to v0.17.0.

	Updated esplugin to v1.0.10.

0.13.4 - 2018-06-02

Fixed

	NewMetadata() now uses the passed plugin’s group if the calling
plugin’s group is implicit, and sets the group to be implicit if the two
plugins’ groups are equal.

0.13.3 - 2018-05-26

Changed

	Improved cycle avoidance when resolving evaluating plugin groups during
sorting. If enforcing the group difference between two plugins would cause a
cycle and one of the plugins’ groups is the default group, that plugin’s group
will be ignored for all plugins in groups between default and the other
plugin’s group.

	The masterlist repository cloning process no longer moves LOOT’s game folders,
so if something goes wrong the process fails more safely.

	The LOOT API is now built with debugging information on Windows, and its PDB
is included in build archives.

	Updated libloadorder to v11.2.2.

Fixed

	Various filesystem-related issues that could be encountered when updating
masterlists, including failure due to file handles being left open while
attempting to remove.

	Building the esplugin and libloadorder dependencies using Rust 1.26.0, which
included a `regression`_ to workspace builds.

0.13.2 - 2018-04-29

Changed

	Updated libloadorder to v11.2.1.

Fixed

	Incorrect load order positions were given for light-master-flagged .esp
plugins when getting the load order (via libloadorder).

0.13.1 - 2018-04-09

Added

	Support for Skyrim VR using GameType::tes5vr.

Changed

	Updated libloadorder to v11.2.0.

0.13.0 - 2018-04-02

Added

	Group metadata as a replacement for priority metadata. Each plugin belongs to
a group, and a group can load after other groups. Plugins belong to the
default group by default.
	Added the loot::Group class to represent a group.

	Added loot::UndefinedGroupError.

	Added GetGroups(), GetUserGroups() and SetUserGroups().

	Added GetGroup(), IsGroupExplicit()
and SetGroup().

	Updated MergeMetadata() to replace the existing
group with the given object’s group if the latter is explicit.

	Updated NewMetadata() to return an object using
the called object’s group.

	Updated HasNameOnly() to check the group is
implicit.

	Updated SortPlugins() to take into account plugin
groups.

Changed

	LoadPlugins() and
SortPlugins() no longer load the current load order
state, so LoadCurrentLoadOrderState() must be called
separately.

	Updated libgit2 to v0.27.0.

	Updated libloadorder to v11.1.0.

Removed

	Support for local and global plugin priorities.
	Removed the loot::Priority class.

	Removed PluginMetadata::GetLocalPriority(),
PluginMetadata::GetGlobalPriority(),
PluginMetadata::SetLocalPriority() and
PluginMetadata::SetGlobalPriority()

	Priorities are no longer taken into account when sorting plugins.

Fixed

	An error when applying a load order for Morrowind, Oblivion, Fallout 3 or
Fallout: New Vegas when a plugin had a timestamp earlier than 1970-01-01
00:00:00 UTC (via libloadorder).

	An error when loading the current load order for Skyrim with a
loadorder.txt incorrectly encoded in Windows-1252 (via libloadorder).

0.12.5 - 2018-02-17

Changed

	Updated esplugin to v1.0.9.

	Updated libgit2 to v0.26.3. This enables TLS 1.2 support on Windows 7, so
users shouldn’t need to manually enable it themselves.

0.12.4 - 2018-02-17

Fixed

	Loading or saving a load order could be very slow because the plugins
directory was scanned recursively, which is unnecessary. In the reported case,
this fix caused saving a load order to go from 23 seconds to 43 milliseconds
(via libloadorder).

	Plugin parsing errors were being logged with trace severity, they are now
logged as errors.

	Saving a load order for Oblivion, Fallout 3 or Fallout: New Vegas now updates
plugin access times to the current time for correctness (via libloadorder).

Changed

	GameInterface::SetLoadOrder() now errors if passed a load order that does
not contain all installed plugins. The previous behaviour was to append any
missing plugins, but this was undefined and could cause unexpected results
(via libloadorder).

	Performance improvements for load order operations, benchmarked at 2x to 150x
faster (via libloadorder).

	Updated mentions of libespm in error messages to mention esplugin instead.

	Updated libloadorder to v11.0.1.

	Updated spdlog to v0.16.3.

0.12.3 - 2018-02-04

Added

	Support for Fallout 4 VR via the new loot::GameType::fo4vr game type.

Fixed

	loot::CreateGameHandle() no longer accepts an empty game path
string, and no longer has a default value for its game path parameter, as
using an empty string as the game path is invalid and always causes an
exception to be thrown.

Changed

	Added an empty string as the default value of
loot::InitialiseLocale()‘s string parameter.

	Updated esplugin to v1.0.8.

	Updated libloadorder to v10.1.0.

0.12.2 - 2017-12-24

Fixed

	Plugins with a .esp file extension that have the light master flag set are
no longer treated as masters when sorting, so they can have other .esp
files as masters without causing cyclic interaction sorting errors.

Changed

	Downgraded Boost to 1.63.0 to take advantage of pre-built binaries on AppVeyor.

0.12.1 - 2017-11-23

Added

	Support for identifying Creation Club plugins using Skyrim.ccc and Fallout4.ccc (via libloadorder).

Changed

	Update esplugin to v1.0.7.

	Update libloadorder to v10.0.4.

0.12.0 - 2017-11-03

Added

	Support for light master (.esl) plugins.

	LoadCurrentLoadOrderState() in loot::GameInterface to
expose load order cache management to clients, as libloadorder no longer
internally manages it.

	loot::SetLoggingCallback() to allow clients to handle the LOOT
API’s logging statements themselves.

	Logging of libloadorder error details.

Changed

	LoadPlugins() now loads the current load order
state before loading plugins.

	Added a condition string field to SimpleMessage.

	Replaced libespm dependency with esplugin v1.0.6. This significantly improves
safety and sorting performance, especially for large load orders.

	Updated libloadorder to v10.0.3. This significantly improves safety and the
performance of load order operations, at the expense of exposing cache
management to the client.

	Replaced Boost.Log with spdlog v0.14.0, removing dependencies on several other
Boost libraries in the process.

	Updated libgit2 to v0.26.0.

	Update Boost to v1.65.1.

Removed

	DatabaseInterface::EvalLists() as it was superseded in v0.11.0 by the
ability to evaluate conditions when getting general messages and individual
plugins’ metadata, which is more efficient.

	SetLoggingVerbosity() and SetLogFile() as they have been superseded
by the new loot::SetLoggingCallback() function.

	The loot/yaml/* headers containing LOOT’s internal YAML conversion
functions are no longer exposed alongside the API headers.

	The loot/windows_encoding_converters.h header is no longer exposed
alongside the API headers.

Fixed

	Formatting in metadata documentation.

	Saving metadata wrote entries in an inconsistent order.

	Clang build errors.

0.11.1 - 2017-06-19

Fixed

	A crash would occur when loading an plugin that had invalid data past its
header. Such plugins are now just silently ignored.

	loot::CreateGameHandle() would not resolve game or local data paths
that are junction links correctly, which caused problems later when trying to
perform actions such as loading plugins.

	Performing a masterlist update on a branch where the remote and local
histories had diverged would fail. The existing local branch is now discarded
and the remote branch checked out anew, as intended.

0.11.0 - 2017-05-13

Added

	New functions to loot::DatabaseInterface:
	WriteUserMetadata()

	GetKnownBashTags()

	GetGeneralMessages()

	GetPluginMetadata()

	GetPluginUserMetadata()

	SetPluginUserMetadata()

	DiscardPluginUserMetadata()

	DiscardAllUserMetadata()

	IsLatestMasterlist()

	A loot::GameInterface pure abstract class that exposes methods for
accessing game-specific functionality.

	A loot::PluginInterface pure abstract class that exposes methods
for accessing plugin file data.

	The loot::SetLoggingVerbosity and loot::SetLogFile
functions and loot::LogVerbosity enum for controlling the API’s
logging behaviour.

	An loot::InitialiseLocale() function that must be called to
configure the API’s locale before any of its other functionality is used.

	LOOT’s internal metadata classes are now exposed as part of the API.

Changed

	Renamed loot::CreateDatabase() to loot::CreateGameHandle(), and
changed its signature so that it returns a shared pointer to a
loot::GameInterface instead of a shared pointer to a
loot::DatabaseInterface.

	Moved SortPlugins() into loot::GameInterface.

	Some loot::DatabaseInterface methods are now const:
	WriteMinimalList()

	GetMasterlistRevision()

	LOOT’s internal YAML conversion functions have been refactored into the
include/loot/yaml directory, but they are not really part of the API.
They’re only exposed so that they can be shared between the API and LOOT
application without introducing another component.

	LOOT’s internal string encoding conversion functions have been refactored into
the include/loot/windows_encoding_converters.h header, but are not really
part of the API. They’re only exposed so that they can be shared between the
API and LOOT application without introducing another component.

	Metadata is now cached more efficiently, reducing the API’s memory footprint.

	Log timestamps now have microsecond precision.

	Updated to libgit2 v0.25.1.

	Refactored code only useful to the LOOT application out of the API internals
and into the application source code.

Removed

	DatabaseInterface::GetPluginTags(),
DatabaseInterface::GetPluginMessages() and
DatabaseInterface::GetPluginCleanliness() have been removed as they have
been superseded by DatabaseInterface::GetPluginMetadata().

	The GameDetectionError class, as it is no longer thrown by the API.

	The PluginTags struct, as it is no longer used.

	The LanguageCode enum, as the API now uses ISO language codes directly
instead.

	The PluginCleanliness enum. as it’s no longer used. Plugin cleanliness
should now be checked by getting a plugin’s evaluated metadata and checking
if any dirty info is present. If none is present, the cleanliness is unknown.
If dirty info is present, check if any of the English info strings contain the
text “Do not clean”: if not, the plugin is dirty.

	The LOOT API no longer caches the load order, as this is already done more
accurately by libloadorder (which is used internally).

Fixed

	Libgit2 error details were not being logged.

	A FileAccessError was thrown when the masterlist path was an empty string. The
API now just skips trying to load the masterlist in this case.

	Updating the masterlist did not update the cached metadata, requiring a call
to LoadLists().

	The reference documentation was broken due to an incompatibility between
Sphinx 1.5.x and Breathe 4.4.

0.10.3 - 2017-01-08

Added

	Automated 64-bit API builds.

Changed

	Replaced std::invalid_argument exceptions thrown during condition evaluation with ConditionSyntaxError exceptions.

	Improved robustness of error handling when calculating file CRCs.

Fixed

	Documentation was not generated correctly for enums, exceptions and structs exposed by the API.

	Added missing documentation for CyclicInteractionError methods.

0.10.2 - 2016-12-03

Changed

	Updated libgit2 to 0.24.3.

Fixed

	A crash could occur if some plugins that are hardcoded to always load were missing. Fixed by updating to libloadorder v9.5.4.

	Plugin cleaning metadata with no info value generated a warning message with no text.

0.10.1 - 2016-11-12

No API changes.

0.10.0 - 2016-11-06

Added

	Support for TES V: Skyrim Special Edition.

Changed

	Completely rewrote the API as a C++ API. The C API has been reimplemented as
a wrapper around the C++ API, and can be found in a separate repository [https://github.com/loot/loot-api-c].

	Windows builds now have a runtime dependency on the MSVC 2015 runtime
redistributable.

	Rewrote the API documentation, which is now hosted online at Read The Docs [https://loot.readthedocs.io].

	The Windows release archive includes the .lib file for compile-time linking.

	LOOT now supports v0.10 of the metadata syntax. This breaks compatibility with existing syntax. See the syntax version history for the details.

	Updated libgit2 to 0.24.2.

Removed

	The loot_get_tag_map() function has no equivalent in the new C++ API as it
is obsolete.

	The loot_apply_load_order() function has no equivalent in the new C++ API
as it just passed through to libloadorder, which clients can use directly
instead.

Fixed

	Database creation was failing when passing paths to symlinks that point to
the game and/or game local paths.

	Cached plugin CRCs causing checksum conditions to always evaluate to false.

	Updating the masterlist when the user’s TEMP and TMP environmental variables point to a different drive than the one LOOT is installed on.

0.9.2 - 2016-08-03

Changed

	libespm (2.5.5) and Pseudosem (1.1.0) dependencies have been updated to the
versions given in brackets.

Fixed

	The packaging script used to create API archives was packaging the wrong
binary, which caused the v0.9.0 and v0.9.1 API releases to actually be
re-releases of a snapshot build made at some point between v0.8.1 and v0.9.0:
the affected API releases were taken offline once this was discovered.

	loot_get_plugin_tags() remembering results and including them in the
results of subsequent calls.

	An error occurred when the user’s temporary files directory didn’t
exist and updating the masterlist tried to create a directory there.

	Errors when reading some Oblivion plugins during sorting, including
the official DLC.

0.9.1 - 2016-06-23

No API changes.

0.9.0 - 2016-05-21

Changed

	Moved API header location to the more standard include/loot/api.h.

	Documented LOOT’s masterlist versioning system.

	Made all API outputs fully const to make it clear they should not be
modified and to avoid internal const casting.

	The loot_db type is now an opaque struct, and functions that used to take
it as a value now take a pointer to it.

Removed

	The loot_cleanup() function, as the one string it used to destroy
is now stored on the stack and so destroyed when the API is unloaded.

	The loot_lang_any constant. The loot_lang_english constant
should be used instead.

0.8.1 - 2015-09-27

Changed

	Safety checks are now performed on file paths when parsing conditions (paths
must not reference a location outside the game folder).

	Updated Boost (1.59.0), libgit2 (0.23.2) and CEF (branch 2454) dependencies.

Fixed

	A crash when loading plugins due to lack of thread safety.

	The masterlist updater and validator not checking for valid condition
and regex syntax.

	The masterlist updater not working correctly on Windows Vista.

0.8.0 - 2015-07-22

Added

	Support for metadata syntax v0.8.

Changed

	Improved plugin loading performance for computers with weaker multithreading
capabilities (eg. non-hyperthreaded dual-core or single-core CPUs).

	LOOT no longer outputs validity warnings for inactive plugins.

	Updated libgit2 to v0.23.0.

Fixed

	Many miscellaneous bugs, including initialisation crashes and
incorrect metadata input/output handling.

	LOOT silently discarding some non-unique metadata: an error will now
occur when loading or attempting to apply such metadata.

	LOOT’s version comparison behaviour for a wide variety of version string
formats.

0.7.1 - 2015-06-22

Fixed

	“No existing load order position” errors when sorting.

	Output of Bash Tag removal suggestions in loot_write_minimal_list().

0.7.0 - 2015-05-20

Initial API release.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Introduction

The metadata syntax is what LOOT’s masterlists and userlists are written in. If you know YAML, good news: the syntax is essentially just YAML 1.2. If you don’t know YAML, then its Wikipedia page [https://en.wikipedia.org/wiki/YAML] is a good introduction. All you really need to know is:

	How lists and associative arrays (key-value maps) are written.

	That whitespace is important, and that only normal spaces (ie. no non-breaking spaces or tabs) count as such.

	That data entries that are siblings must be indented by the same amount, and child data nodes must be indented further than their parents (see the example later in this document if you don’t understand).

	That YAML files must be written in a Unicode encoding.

	That each key in a key-value map must only appear once per map object.

An important point that is more specific to how LOOT uses YAML:

	Strings are case-sensitive, apart from file paths, regular expressions and checksums.

Some properties of file paths as used by LOOT:

	They are evaluated as paths relative to the game’s Data folder.

	They cannot reference a path outside of the game’s folder structure, ie. they cannot contain the substring ../../.

	Regular expression file paths must be written in the EMCAScript [http://www.cplusplus.com/reference/regex/ECMAScript/] syntax, and they must use / for directory separators.

	Only the filename of a regex file path may contain non-literal regex syntax, ie. if the filename part of the regex file path is removed, the remainder must be an exact folder path (though with the regex syntax special characters escaped). For example, given the regex file path Meshes/Resources(1|2)/(upperclass)?table.nif, LOOT will look for a file named table.nif or upperclasstable.nif in the Meshes\Resources(1|2) folder, rather than looking in the Meshes\Resources1 and Meshes\Resources2 folders.

In this document, where a value’s type is given as X list this is equivalent to a YAML sequence of values which are of the data type X. Where a value’s type is given as X set, this is equivalent to a YAML sequence of unique values which are of the data type X. Uniqueness is determined using the equality criteria for that data type. All the non-standard data types that LOOT’s metadata syntax uses have their equality criteria defined later in this document.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Metadata File Structure

The root of a metadata file is a key-value map. LOOT will recognise the following keys, none of which are required. Other keys may also be present, but are not processed by LOOT.

	
bash_tags

	string list

A list of Bash Tags that are supported by the masterlist’s game. These Bash Tags are used to provide autocomplete suggestions in LOOT’s metadata editor.

	
globals

	message list

A list of message data structures for messages that are displayed independently of any plugin.

	
groups

	group set

A set of group data structures that represent the groups that plugins can belong to.

	
plugins

	plugin list and plugin set

The plugin data structures that hold all the plugin metadata within the file. It is a mixture of a list and a set because no non-regex plugin value may be equal to any other non-regex plugin value , but there may be any number of equal regex plugin values, and non-regex plugin values may be equal to regex plugin values.If multiple plugin values match a single plugin, their metadata is merged in the order the values are listed, and as defined in Merging Behaviour.

The message and plugin data structures are detailed in the next section.

Example

bash_tags:
 - 'C.Climate'
 - 'Relev'

globals:
 - type: say
 content: 'You are using the latest version of LOOT.'
 condition: 'version("LOOT", "0.5.0.0", ==)'

groups:
 - name: 'Map Markers'
 after:
 - 'default'

plugins:
 - name: 'Armamentarium.esm'
 tag:
 - Relev
 - name: 'ArmamentariumFran.esm'
 tag:
 - Relev
 - name: 'Beautiful People 2ch-Ed.esm'
 tag:
 - Eyes
 - Graphics
 - Hair
 - R.Relations
 - name: 'More Map Markers.esp'
 group: 'Map Markers'

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Data Structures

LOOT expects metadata to be laid out using a certain set of data structures, described in this section.

	Tag

	File

	Group

	Localised Content

	Message

	Location

	Cleaning Data

	Plugin

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

 	Data Structures »

Tag

LOOT metadata files can contain suggestions for the addition or removal of Bash Tags, and this is the structure used for them. It has two forms: a key-value string map and a scalar string.

Map Form

	
name

	Required. A Bash Tag, prefixed with a minus sign if it is suggested for removal.

	
condition

	A condition string that is evaluated to determine whether this Bash Tag should be suggested: if it evaluates to true, the Tag is suggested, otherwise it is ignored. See Condition Strings for details. If undefined, defaults to an empty string.

Scalar Form

The scalar form is simply the value of the map form’s name key. Using the scalar form is equivalent to using the map form with an undefined condition key.

Equality

Two tag data structures are equal if the lowercased values of their name keys are identical.

Examples

Scalar form:

Relations

Map form:

name: -Relations
condition: 'file("Mart''s Monster Mod for OOO.esm") or file("FCOM_Convergence.esm")'

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

 	Data Structures »

File

This structure can be used to hold file paths. It has two forms: a key-value string map and a scalar string.

Map Form

	
name

	Required. An exact (ie. not regex) file path or name.

	
display

	A substitute string to be displayed instead of the file path in any generated messages, eg. the name of the mod the file belongs to. If undefined, the name key’s value is used.

	
condition

	A condition string that is evaluated to determine whether this file data should be used: if it evaluates to true, the data is used, otherwise it is ignored. See Condition Strings for details.

Scalar Form

The scalar form is simply the value of the map form’s name key. Using the scalar form is equivalent to using the map form with undefined display and condition keys.

Equality

Two file data structures are equal if the lowercased values of their name keys are identical.

Examples

Scalar form:

'../obse_loader.exe'

Map form:

name: '../obse_loader.exe'
condition: 'version("../obse_loader.exe", "0.0.18.0", >=)'
display: 'OBSE v18+'

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

 	Data Structures »

Group

Groups represent sets of plugins, and are a way to concisely and extensibly
load sets of plugins after other sets of plugins.

This structure can be used to hold group definitions. It is a key-value map.

	
name

	string

Required. A case-sensitive name that identifies the group.

	
after

	string set

The names of groups that this group loads after. Group names are
case-sensitive. If undefined, the set is empty. The named groups must be
defined when LOOT sorts plugins, but they don’t need to be defined in the same
metadata file.

Sorting errors will occur if:

	A group loads after another group that does not exist.

	Group loading is cyclic (e.g. A loads after B and B loads after A).

Merging Groups

When a group definition for an already-defined group is encountered, the
after sets of the two definitions are merged.

The default Group

There is one predefined group named default that all plugins belong to by
default. It is defined with an empty after set, as no other predefined
groups exist for it to load after.

Like any other group, the default group can be redefined to add group names
to its after set.

Equality

Two group data structures are equal if the values of their name keys are identical.

Examples

Create a group for map marker plugins that loads after the predefined
'default' group.
name: 'Map Markers'
after:
 - 'default'

Extend the predefined 'default' group to load after an 'Unofficial Patches'
group that is defined elsewhere.
name: 'default'
after:
 - 'Unofficial Patches'

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

 	Data Structures »

Localised Content

The localised content data structure is a key-value string map.

	
text

	Required. The actual message content string.

	
lang

	Required. The language that text is written in, given as a code of the form ll or ll_CC, where ll is an ISO 639-1 language code and CC is an ISO 3166 country code. For example,

	Language
	Code

	Brazilian Portuguese
	pt_BR

	Chinese
	zh_CN

	Danish
	da

	English
	en

	Finnish
	fi

	French
	fr

	German
	de

	Korean
	ko

	Polish
	pl

	Russian
	ru

	Spanish
	es

	Swedish
	sv

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

 	Data Structures »

Message

Messages are given as key-value maps.

	
type

	string

Required. The type string can be one of three keywords.

	
say

	A generic message, useful for miscellaneous notes.

	
warn

	A warning message, describing a non-critical issue with the user’s mods (eg. dirty mods).

	
error

	An error message, decribing a critical installation issue (eg. missing masters, corrupt plugins).

	
content

	string or localised content list

Required. Either simply a string, or a list of localised content data structures. If the latter, one of the structures must be for English.

	
condition

	string

A condition string that is evaluated to determine whether the message should be displayed: if it evaluates to true, the message is displayed, otherwise it is not. See Condition Strings for details.

	
subs

	string list

A list of strings to be substituted into the message content string. The content string must use numbered specifiers (%1%, %2%, etc.), where the numbers correspond to the position of the substitution string in this list to use, to denote where these strings are to be substituted.

Message Formatting

LOOT supports formatting of messages using GitHub Flavored Markdown [https://help.github.com/articles/github-flavored-markdown]. Support is provided by the Marked [https://github.com/chjj/marked] library (v0.3). Strings that get substituted into messages, such as file display names and cleaning data utility strings, also support the same formatting options.

Language Support

If a message’s content value is a string, the message will use the string as its content if displayed. Otherwise, the first localised content structure with a language that matches LOOT’s current language will be used as the message’s content if displayed. If there are no matches, then the first structure in English will be used.

Equality

The equality of two message data structures is determined by comparing the values of their content keys. As the values of the keys can be different types, a comparison value is selected for each message using the following logic:

	If a value’s type is a localised content list, then the English content string in that list is selected as the comparison value.

	If a value’s type is a string, then that string is selected as the comparison value.

The two message data structures are then equal if their lowercased comparison values are identical.

Examples

Translations by Google

type: say
condition: 'file("foo.esp")'
content:
 - lang: en
 text: 'An example link: <http://www.example.com>'
 - lang: ru
 text: 'Это пример ссылки: <http://www.example.com>'

would be displayed as

отмечать: Это пример ссылки: http://www.example.com

if the current language was Russian and foo.esp was installed, while

type: say
content: 'An alternative [example link](http://www.example.com), with no translations.'

would be displayed as

отмечать: An alternative example link [http://www.example.com], with no translations.

In English,

type: say
content: 'A newer version of %1% [is available](%2%).'
subs:
 - 'this plugin'
 - 'http://www.example.com'

would be displayed as

Note: A newer version of this plugin is available [http://www.example.com].

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

 	Data Structures »

Location

This data structure is used to hold information on where a plugin is hosted online. It has two forms: a key-value string map and a scalar string.

Map Form

	
link

	Required. A URL at which the plugin is found.

	
name

	A descriptive name for the URL, which may be used as hyperlink text. If undefined, defaults to an empty string.

Scalar Form

The scalar form is simply the value of the map form’s link key. Using the scalar form is equivalent to using the map form with an undefined name key.

Equality

Two location data structures are equal if the lowercased values of their link keys are identical.

Examples

Scalar form:

'http://skyrim.nexusmods.com/mods/19/'

Map form:

link: 'https://steamcommunity.com/sharedfiles/filedetails/?id=419668499'
name: 'Unofficial Skyrim Patch on Steam Workshop'

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

 	Data Structures »

Cleaning Data

This structure holds information on which versions of a plugin are dirty or clean, and if dirty, how many identical-to-master records, deleted records and deleted navmeshes (if applicable) it contains. Cleaning data is given as a key-value map.

	
crc

	hexadecimal integer

Required. The CRC-32 checksum of the plugin. If the plugin is dirty, this needs to be the CRC of the plugin before before cleaning. LOOT displays the CRCs of installed plugins in its report. The 8-character CRC should be preceded by 0x so that it is interpreted correctly.

	
util

	string

Required. The utility that was used to check the plugin for dirty edits. If available, the version of the utility used should also be included (e.g. TES5Edit v3.11).

	
info

	string or localised content list

A message that will be displayed to the user. If a localised content list is provided, one of the structures must be for English. This is only used if the plugin is dirty, and is intended for providing cleaning instructions to the user. If undefined, defaults to an empty string.

	
itm

	integer

The number of identical-to-master records reported for the dirty plugin. If undefined, defaults to zero.

	
udr

	integer

The number of undeleted records reported for the dirty plugin. If undefined, defaults to zero.

	
nav

	integer

The number of deleted navmeshes reported for the dirty plugin. If undefined, defaults to zero.

Equality

Two cleaning data structures are equal if the values of their crc keys are identical.

Examples

A dirty plugin:

crc: 0x3DF62ABC
util: '[TES5Edit](http://www.nexusmods.com/skyrim/mods/25859) v3.1.1'
info: 'A cleaning guide is available [here](http://www.creationkit.com/index.php?title=TES5Edit_Cleaning_Guide_-_TES5Edit).'
itm: 4
udr: 160

A clean plugin:

crc: 0x2ABC3DF6
util: '[TES5Edit](http://www.nexusmods.com/skyrim/mods/25859) v3.1.1'

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

 	Data Structures »

Plugin

This is the structure that brings all the others together, and forms the main component of a metadata file. It is a key-value map.

	
name

	string

Required. Can be an exact plugin filename or a regular expression plugin filename. If the filename contains any of the characters :*?|, the string will be treated as a regular expression, otherwise it will be treated as an exact filename. For example, Example\.esm will be treated as a regular expression, as it contains a \ character.

	
enabled

	boolean

Enables or disables use of the plugin object. Used for user rules, but no reason to use it in the masterlist. If unspecified, defaults to true.

	
group

	string

The name of the group the plugin belongs to. If unspecified, defaults to default.

The named group must be exist when LOOT sorts plugins, but doesn’t need to
be defined in the same metadata file. If at sort time the group does not
exist, a sorting error will occur.

The plugin must load after all the plugins in the groups its group is defined
to load after, resolving them recursively. An exception exists if doing so
would introduce a cyclic dependency between two plugins without any other
group loading rules applied.

For example, if for plugins A.esp, B.esp, C.esp and D.esp:

	B.esp has A.esp as a master

	A.esp is in group A

	B.esp and C.esp are in the default group

	D.esp is in group D

	group A loads after the default group

	the default group loads after group D

Then the load order must be D.esp, C.esp, A.esp, B.esp. Although A.esp’s group
must load after B.esp’s group, this would cause a cycle between A.esp and
B.esp, so the requirement is ignored for that pair of plugins.

However, if for plugins A.esp, B.esp and C.esp in groups of the same names:

	group B loads after group A

	group C loads after group B

	A.esp has C.esp as a master

This will cause a sorting error, as neither group rule introduces a cyclic
dependency when combined in isolation with the third rule, but having all
three rules applied causes a cycle.

	
after

	file set

Plugins that this plugin must load after, but which are not dependencies. Used to resolve specific compatibility issues. If undefined, the set is empty.

	
req

	file set

Files that this plugin requires to be present. This plugin will load after any plugins listed. If any of these files are missing, an error message will be displayed. Intended for use specifying implicit dependencies, as LOOT will detect a plugin’s explicit masters itself. If undefined, the set is empty.

	
inc

	file set

Files that this plugin is incompatible with. If any of these files are present, an error message will be displayed. If undefined, the set is empty.

	
msg

	message list

The messages attached to this plugin. The messages will be displayed in the order that they are listed. If undefined, the list is empty.

	
tag

	tag set

Bash Tags suggested for this plugin. If a Bash Tag is suggested for both addition and removal, the latter will override the former when the list is evaluated. If undefined, the set is empty.

	
url

	location set

An unordered set of locations for this plugin. If the same version can be found at multiple locations, only one location should be recorded. If undefined, the set is empty. This metadata is not currently used by LOOT.

	
dirty

	cleaning data set

Cleaning data for this plugin, identifying dirty plugins. Plugin entries with regular expression filenames must not contain cleaning data.

	
clean

	cleaning data set

An unordered set of cleaning data structures for this plugin, identifying clean plugins. Plugin entries with regular expression filenames must not contain cleaning data. The itm, udr and nav fields are unused in this context, as they’re assumed to be zero.

Equality

The equality of two plugin data structures is determined by comparing the values of their name keys.

	If neither or both values are regular expressions, then the plugin data structures are equal if the lowercased values are identical.

	If one value is a regular expression, then the plugin data structures are equal if the other value is an exact match for it.

Merging Behaviour

	Key
	Merge Behaviour (merging B into A)

	name
	Not merged.

	enabled
	Replaced by B’s value.

	group
	Replaced by B’s value.

	after
	Merged. If B’s file set contains an item that is equal to one already present in A’s file set, B’s item is discarded.

	req
	Merged. If B’s file set contains an item that is equal to one already present in A’s file set, B’s item is discarded.

	inc
	Merged. If B’s file set contains an item that is equal to one already present in A’s file set, B’s item is discarded.

	msg
	Merged. If B’s message list contains an item that is equal to one already present in A’s message list, B’s item is discarded.

	tag
	Merged.If B’s tag set contains an item that is equal to one already present in A’s tag set, B’s item is discarded.

	url
	Merged. If B’s location set contains an item that is equal to one already present in A’s location set, B’s item is discarded.

	dirty
	Merged.If B’s dirty data set contain an item that is equal to one already present in A’s dirty data set, B’s item is discarded.

	clean
	Merged. If B’s clean data set contain an item that is equal to one already present in A’s clean data set, B’s item is discarded.

Examples

name: 'Oscuro''s_Oblivion_Overhaul.esm'
req:
 - 'Oblivion.esm' # Don't do this, Oblivion.esm is a master of Oscuro's_Oblivion_Overhaul.esm, so LOOT already knows it's required.
 - name: 'example.esp'
 display: '[Example Mod](http://www.example.com)'
 condition: 'version("Oscuro''s_Oblivion_Overhaul.esm", "15.0", ==)'
tag:
 - Actors.Spells
 - Graphics
 - Invent
 - Relations
 - Scripts
 - Stats
 - name: -Relations
 condition: 'file("Mart''s Monster Mod for OOO.esm") or file("FCOM_Convergence.esm")'
msg:
 - type: say
 content: 'Do not clean. "Dirty" edits are intentional and required for the mod to function.'

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Condition Strings

Condition strings can be used to ensure that data is only acted on by LOOT under certain circumstances. They are very similar to boolean conditional expressions in programming languages such as Python, though more limited.

Omitting optional parentheses (see below), their EBNF [https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form] grammar is:

compound_condition ::= condition, { (logical_and | logical_or), condition }
condition ::= [logical_not], function
logical_and ::= "and"
logical_or ::= "or"
logical_not ::= "not"

Types

	
file_path

	A double-quoted file path, or "LOOT", which references the LOOT executable being run.

	
regular_expression

	A double-quoted regular expression string to match file paths to.

	
checksum

	A string of hexadecimal digits representing an unsigned integer that is the data checksum of a file. LOOT displays the checksums of plugins in its user interface after running.

	
version

	A double-quoted string of characters representing the version of a plugin or executable. LOOT displays the versions of plugins in its user interface after running.

	
comparison_operator

	One of the following comparison operators.

	
==

	Is equal to

	
!=

	Is not equal to

	
<

	Is less than

	
>

	Is greater than

	
<=

	Is less than or equal to

	
>=

	Is greater than or equal to

Functions

There are several conditions that can be tested for using the functions detailed below. All functions return a boolean. For functions that take a path or regex, the argument is treated as regex if it contains any of the characters :*?|.

	
file(file_path path)

	Returns true if path is installed, and false otherwise.

	
file(regular_expression regex)

	Returns true if a file matching regex is found, and false otherwise.

	
active(file_path path)

	Returns true if path is an active plugin, and false otherwise.

	
active(regular_expression regex)

	Returns true if an active plugin matching regex is found, and false otherwise.

	
many(regular_expression regex)

	Returns true if more than one file matching regex is found, and false otherwise.

	
many_active(regular_expression regex)

	Returns true if more than one active plugin matching regex is found, and false otherwise.

	
checksum(file_path path, checksum expected_checksum)

	Returns true if the calculated CRC-32 checksum of path matches expected_checksum, and false otherwise. Returns false if path does not exist.

	
version(file_path path, version given_version, comparison_operator comparator)

	Returns true if the boolean expression:

actual_version comparator given_version

(where actual version is the version read from path) holds true, and false otherwise. If path does not exist or does not have a version number, its version is assumed to be 0.

The comparison uses the precedence rules defined by Semantic Versioning [http://semver.org/], extended to allow leading zeroes, an arbitrary number of release version numbers, case-insensitivity and a wider range of separator characters.

Logical Operators

The and, or and not operators have their usual definitions, except that the not operator only ever operates on the result of the function immediately following it.

Order of Evaluation

Condition strings are evaluated according to the usual C-style operator precedence rules, and parentheses can be used to override these rules. For example:

function and function or not function

is evaluated as:

(function and function) or (not function)

but:

function and (function or not function)

is evaluated as:

function and (function or (not function))

Parentheses cannot be used between a not operator and the function following it.

Performance

LOOT caches the results of condition evaluations. A regular expression check will still take longer than a file check though, so use the former only when appropriate to do so.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Version History

The version history of the metadata syntax is given below.

0.13

Added

	The Group data structure.

	The groups list to the root of the metadata file format.

	The group key to the plugin data structure.

Removed

	The priority field from the plugin data structure.

	The global_priority field from the plugin data structure.

0.10 - 2016-11-06

Added

	The clean key to the plugin data structure.

	The global_priority field to the plugin data structure.

	The many_active() condition function.

	The info key to the cleaning data structure.

Changed

	Renamed the str key in the localised content data structure to text .

	The priority field of the plugin data structure now stores values between -127 and 127 inclusive.

	Regular expressions no longer accept \ as a directory separator: / must now be used.

	The file() condition function now also accepts a regular expression.

	The active() condition function to also accept a regular expression.

	Renamed the dirty info data structure to the cleaning data structure.

Removed

	The regex() condition function, as it has been obsoleted by the file() function’s new regex support.

0.8 - 2015-07-22

Added

	The name key to the location data structure.

	The many("regex") condition function.

	The documentation now defines the equality criteria for all of the metadata syntax’s non-standard data structures.

Changed

	Detection of regular expression plugin entries. Previously, a plugin entry was treated as having a regular expression filename if the filename ended with \.esp or \.esp . Now, a plugin entry is treated as having a regular expression filename if the filename contains one or more of :*?| .

Removed

	Removed the ver key in the location data structure.

Fixed

	The documentation gave the values of the after , req , inc , tag , url and dirty keys as lists, when they have always been sets.

0.7 - 2015-05-20

Added

	The message string substitution key, i.e. sub , in the message data structure.

	Support for YAML merge keys, i.e. << .

Changed

	Messages may now be formatted using most of GitHub Flavored Markdown, minus the GitHub-specific features (like @mentions, issue/repo linking and emoji).

0.6 - 2014-07-05

No changes.

0.5 - 2014-03-31

Initial release.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	LOOT API latest documentation »

Copyright Notice

LOOT and its API are distributed under the GNU General Public License v3.0. The documentation is distributed under the GNU Free Documentation License v1.3. The full texts of both licenses are included in Copyright License Texts.

While the GPL license allows anyone to make derivative works of LOOT, the LOOT Team encourages those thinking of doing so to first discuss their reasoning for such an endeavour with the Team. It may be that what the derivative work would do differently is already planned for a future version of LOOT or would be happily integrated into LOOT, thus avoiding any extra effort by others.

LOOT has been specifically designed to prevent it being locked into the LOOT Team’s official masterlist repositories. Nevertheless, the LOOT Team appeals to the community to avoid the distribution of unofficial masterlists, as this would only hamper the effort to create one set of stores for load order information. Any issues with a masterlist are best brought to the attention of the LOOT Team so that they may be remedied.

GNU Free Documentation License Version 1.3 Notice:

Copyright (C) 2012—2016 WrinklyNinja

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in Copyright License Texts.

 © Copyright 2016, WrinklyNinja.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 previous |

 	LOOT API latest documentation »

Copyright License Texts

Contents

	Copyright License Texts
	Boost

	libgit2

	LOOT API, Libespm & Libloadorder

	LOOT API Documentation

	Pseudosem

	yaml-cpp

Boost [http://www.boost.org/]

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

libgit2 [https://github.com/libgit2/libgit2]

 libgit2 is Copyright (C) the libgit2 contributors,
 unless otherwise stated. See the AUTHORS file for details.

 Note that the only valid version of the GPL as far as this project
 is concerned is _this_ particular version of the license (ie v2, not
 v2.2 or v3.x or whatever), unless explicitly otherwise stated.

--

 LINKING EXCEPTION

 In addition to the permissions in the GNU General Public License,
 the authors give you unlimited permission to link the compiled
 version of this library into combinations with other programs,
 and to distribute those combinations without any restriction
 coming from the use of this file. (The General Public License
 restrictions do apply in other respects; for example, they cover
 modification of the file, and distribution when not linked into
 a combined executable.)

--

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

--

The bundled ZLib code is licensed under the ZLib license:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler
 jloup@gzip.org madler@alumni.caltech.edu

--

The priority queue implementation is based on code licensed under the
Apache 2.0 license:

 Copyright 2010 Volkan Yazıcı <volkan.yazici@gmail.com>
 Copyright 2006-2010 The Apache Software Foundation

The full text of the Apache 2.0 license is available at:

 http://www.apache.org/licenses/LICENSE-2.0

--

The Clay framework is licensed under the MIT license:

Copyright (C) 2011 by Vicent Marti

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

--

The regex library (deps/regex/) is licensed under the GNU LGPL

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Index

 Navigation

 	
 index

 	LOOT API latest documentation »

Index

 C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

C

 	

 	Choose (C++ function)

 	ChooseInfo (C++ function)

 	

 	condition (C++ member)

 	ConditionalMetadata (C++ function), [1]

 	CyclicInteractionError (C++ function)

D

 	

 	defaultLanguage (C++ member)

 	DiscardAllUserMetadata (C++ function)

 	

 	DiscardPluginUserMetadata (C++ function)

 	DoFormIDsOverlap (C++ function)

F

 	

 	File (C++ function), [1]

G

 	

 	GetAfterGroups (C++ function)

 	getBackCycle (C++ function)

 	GetBashTags (C++ function)

 	GetCleanInfo (C++ function)

 	GetCleaningUtility (C++ function)

 	GetCondition (C++ function)

 	GetContent (C++ function), [1]

 	GetCRC (C++ function), [1]

 	GetDatabase (C++ function)

 	GetDeletedNavmeshCount (C++ function)

 	GetDeletedReferenceCount (C++ function)

 	GetDirtyInfo (C++ function)

 	GetDisplayName (C++ function)

 	getFirstPlugin (C++ function)

 	GetGeneralMessages (C++ function)

 	GetGroup (C++ function)

 	getGroupName (C++ function)

 	GetGroups (C++ function)

 	GetIncompatibilities (C++ function)

 	GetInfo (C++ function)

 	GetITMCount (C++ function)

 	GetKnownBashTags (C++ function)

 	

 	GetLanguage (C++ function)

 	getLastPlugin (C++ function)

 	GetLoadAfterFiles (C++ function)

 	GetLoadedPlugins (C++ function)

 	GetLoadOrder (C++ function)

 	GetLocations (C++ function)

 	GetLowercasedName (C++ function), [1]

 	GetMasterlistRevision (C++ function)

 	GetMasters (C++ function)

 	GetMessages (C++ function)

 	GetName (C++ function), [1], [2], [3], [4], [5]

 	GetPlugin (C++ function)

 	GetPluginMetadata (C++ function)

 	GetPluginUserMetadata (C++ function)

 	GetRequirements (C++ function)

 	GetSimpleMessages (C++ function)

 	GetTags (C++ function)

 	GetText (C++ function)

 	GetType (C++ function)

 	GetURL (C++ function)

 	GetUserGroups (C++ function)

 	GetVersion (C++ function)

 	Group (C++ function), [1], [2]

H

 	

 	HasNameOnly (C++ function)

I

 	

 	IdentifyMainMasterFile (C++ function)

 	is_modified (C++ member)

 	IsAddition (C++ function)

 	IsConditional (C++ function)

 	IsEmpty (C++ function)

 	IsEnabled (C++ function)

 	

 	IsGroupExplicit (C++ function)

 	IsLatestMasterlist (C++ function)

 	IsLightMaster (C++ function)

 	IsMaster (C++ function)

 	IsPluginActive (C++ function)

 	IsRegexPlugin (C++ function)

 	IsValidPlugin (C++ function)

L

 	

 	language (C++ member)

 	LoadCurrentLoadOrderState (C++ function)

 	LoadLists (C++ function)

 	LoadPlugins (C++ function)

 	LoadsArchive (C++ function)

 	Location (C++ function), [1]

 	loot::ConditionalMetadata (C++ class)

 	loot::ConditionSyntaxError (C++ class)

 	loot::CreateGameHandle (C++ function)

 	loot::CyclicInteractionError (C++ class)

 	loot::DatabaseInterface (C++ class)

 	loot::debug (C++ enumerator)

 	loot::error (C++ enumerator), [1]

 	loot::fatal (C++ enumerator)

 	loot::File (C++ class)

 	loot::FileAccessError (C++ class)

 	loot::fo3 (C++ enumerator)

 	loot::fo4 (C++ enumerator)

 	loot::fo4vr (C++ enumerator)

 	loot::fonv (C++ enumerator)

 	loot::GameInterface (C++ class)

 	loot::GameType (C++ type)

 	loot::GitStateError (C++ class)

 	loot::Group (C++ class)

 	loot::info (C++ enumerator)

 	

 	loot::InitialiseLocale (C++ function)

 	loot::IsCompatible (C++ function)

 	loot::libgit2_category (C++ function)

 	loot::libloadorder_category (C++ function)

 	loot::Location (C++ class)

 	loot::LogLevel (C++ type)

 	loot::LootVersion (C++ class)

 	loot::MasterlistInfo (C++ class)

 	loot::Message (C++ class)

 	loot::MessageContent (C++ class)

 	loot::MessageType (C++ type)

 	loot::PluginCleaningData (C++ class)

 	loot::PluginInterface (C++ class)

 	loot::PluginMetadata (C++ class)

 	loot::say (C++ enumerator)

 	loot::SetLoggingCallback (C++ function)

 	loot::SimpleMessage (C++ class)

 	loot::Tag (C++ class)

 	loot::tes4 (C++ enumerator)

 	loot::tes5 (C++ enumerator)

 	loot::tes5se (C++ enumerator)

 	loot::tes5vr (C++ enumerator)

 	loot::trace (C++ enumerator)

 	loot::UndefinedGroupError (C++ class)

 	loot::warn (C++ enumerator)

 	loot::warning (C++ enumerator)

M

 	

 	major (C++ member)

 	MergeMetadata (C++ function)

 	

 	Mes