
libloot Documentation
Release latest

WrinklyNinja

Nov 25, 2023

API DOCUMENTATION

1 Introduction 1

2 Miscellaneous Details 3
2.1 String Encoding . 3
2.2 Language Codes . 3
2.3 Errors . 3
2.4 Metadata Files . 3
2.5 Caching . 4
2.6 Performance . 4

3 LOOT’s Sorting Algorithm 5
3.1 Load plugin data . 5
3.2 Create plugin graph vertices . 5
3.3 Create plugin graph edges . 6
3.4 Topologically sort the plugin graphs . 8
3.5 Combine the two load orders . 8

4 API Reference 9
4.1 Constants . 9
4.2 Enumerations . 9
4.3 Functions . 11
4.4 Interfaces . 12
4.5 Classes . 19
4.6 Exceptions . 28
4.7 Error Categories . 29

5 Credits 31

6 Version History 33
6.1 0.22.2 - 2023-11-25 . 33
6.2 0.22.1 - 2023-10-06 . 33
6.3 0.22.0 - 2023-09-29 . 34
6.4 0.21.0 - 2023-09-13 . 34
6.5 0.19.4 - 2023-05-06 . 35
6.6 0.19.3 - 2023-03-18 . 36
6.7 0.19.2 - 2023-01-13 . 36
6.8 0.19.1 - 2023-01-09 . 37
6.9 0.19.0 - 2023-01-07 . 37
6.10 0.18.3 - 2022-12-13 . 38
6.11 0.18.2 - 2022-10-11 . 38
6.12 0.18.1 - 2022-10-01 . 39

i

6.13 0.18.0 - 2022-02-27 . 39
6.14 0.17.3 - 2022-01-02 . 41
6.15 0.17.2 - 2021-12-24 . 41
6.16 0.17.1 - 2021-11-13 . 41
6.17 0.17.0 - 2021-09-24 . 42
6.18 0.16.3 - 2021-05-06 . 43
6.19 0.16.2 - 2021-02-13 . 44
6.20 0.16.1 - 2020-08-22 . 44
6.21 0.16.0 - 2020-07-12 . 44
6.22 0.15.2 - 2020-06-14 . 46
6.23 0.15.1 - 2019-12-07 . 46
6.24 0.15.0 - 2019-11-05 . 47
6.25 0.14.10 - 2019-09-06 . 48
6.26 0.14.9 - 2019-07-23 . 48
6.27 0.14.8 - 2019-06-30 . 48
6.28 0.14.7 - 2019-06-13 . 49
6.29 0.14.6 - 2019-04-24 . 49
6.30 0.14.5 - 2019-02-27 . 49
6.31 0.14.4 - 2019-01-27 . 50
6.32 0.14.3 - 2019-01-27 . 50
6.33 0.14.2 - 2019-01-20 . 50
6.34 0.14.1 - 2018-12-23 . 51
6.35 0.14.0 - 2018-12-09 . 51
6.36 0.13.8 - 2018-09-24 . 53
6.37 0.13.7 - 2018-09-10 . 53
6.38 0.13.6 - 2018-06-29 . 53
6.39 0.13.5 - 2018-06-02 . 54
6.40 0.13.4 - 2018-06-02 . 54
6.41 0.13.3 - 2018-05-26 . 54
6.42 0.13.2 - 2018-04-29 . 55
6.43 0.13.1 - 2018-04-09 . 55
6.44 0.13.0 - 2018-04-02 . 55
6.45 0.12.5 - 2018-02-17 . 56
6.46 0.12.4 - 2018-02-17 . 56
6.47 0.12.3 - 2018-02-04 . 57
6.48 0.12.2 - 2017-12-24 . 57
6.49 0.12.1 - 2017-11-23 . 58
6.50 0.12.0 - 2017-11-03 . 58
6.51 0.11.1 - 2017-06-19 . 59
6.52 0.11.0 - 2017-05-13 . 59
6.53 0.10.3 - 2017-01-08 . 61
6.54 0.10.2 - 2016-12-03 . 61
6.55 0.10.1 - 2016-11-12 . 62
6.56 0.10.0 - 2016-11-06 . 62
6.57 0.9.2 - 2016-08-03 . 62
6.58 0.9.1 - 2016-06-23 . 63
6.59 0.9.0 - 2016-05-21 . 63
6.60 0.8.1 - 2015-09-27 . 63
6.61 0.8.0 - 2015-07-22 . 64
6.62 0.7.1 - 2015-06-22 . 64
6.63 0.7.0 - 2015-05-20 . 64

7 Introduction 65

ii

8 Metadata File Structure 67
8.1 Example . 68

9 Data Structures 69
9.1 Tag . 69
9.2 File . 70
9.3 Group . 71
9.4 Localised Content . 72
9.5 Message . 73
9.6 Location . 74
9.7 Cleaning Data . 75
9.8 Plugin . 76

10 Condition Strings 81
10.1 Types . 81
10.2 Functions . 82
10.3 Logical Operators . 84
10.4 Performance . 85

11 Version History 87
11.1 0.21 - 2023-08-30 . 87
11.2 0.18 - 2022-02-27 . 87
11.3 0.17 - 2021-09-24 . 88
11.4 0.16 - 2020-07-12 . 88
11.5 0.15 - 2019-11-05 . 88
11.6 0.14 - 2018-12-09 . 89
11.7 0.13 - 2018-04-02 . 89
11.8 0.10 - 2016-11-06 . 90
11.9 0.8 - 2015-07-22 . 90
11.10 0.7 - 2015-05-20 . 91
11.11 0.6 - 2014-07-05 . 91
11.12 0.5 - 2014-03-31 . 91

12 Copyright Notice 93

13 Copyright License Texts 95
13.1 Boost . 95
13.2 libloot, esplugin & Libloadorder . 96
13.3 libloot Documentation . 108
13.4 spdlog . 116
13.5 yaml-cpp . 116

Index 119

iii

iv

CHAPTER

ONE

INTRODUCTION

LOOT is a utility that helps users avoid serious conflicts between their mods by setting their plugins in an optimal load
order. It also provides tens of thousands of plugin-specific messages, including usage notes, requirements, incompati-
bilities, bug warnings and installation mistake notifications, and thousands of Bash Tag suggestions.

This metadata that LOOT supplies is stored in its masterlist, which is maintained by the LOOT team using information
provided by mod authors and users. Users can also add to and modify the metadata used by LOOT through the use of
userlist files. libloot provides all of LOOT’s non-UI-related functionality, and can be used by third-party developers to
access this metadata for use in their own programs.

1

libloot Documentation, Release latest

2 Chapter 1. Introduction

CHAPTER

TWO

MISCELLANEOUS DETAILS

2.1 String Encoding

• All output strings are encoded in UTF-8.

• Metadata files are written encoded in UTF-8.

• Input strings are expected to be encoded in UTF-8.

• Metadata files read are expected to be encoded in UTF-8.

• File paths are case-sensitive if and only if the underlying file system is case-sensitive.

2.2 Language Codes

All language strings in the API are codes of the form ll or ll_CC, where ll is an ISO 639-1 language code and CC is
an ISO 3166 country code. For example, the default language for metadata message content is English, identified by
the code en, and Brazilian Portuguese is pt_BR.

2.3 Errors

All errors encountered are thrown as exceptions that inherit from std::exception.

2.4 Metadata Files

LOOT stores plugin metadata in YAML files. It distinguishes between three types of metadata file:

• masterlist files: each game has a single masterlist, which is a public, curated metadata store

• masterlist prelude files: there is a single masterlist prelude, which is a public store of common metadata templates
that can be shared across all masterlists

• userlist files: each game has a userlist, which is a private user-specific metadata store containing metadata added
by the LOOT user.

All three files use the same syntax, but the masterlist prelude file is used to replace part of a masterlist file before it is
parsed, and metadata in the userlist extends or replaces metadata sourced from the masterlist.

LOOT’s plugin metadata can be conditional, eg. a plugin may require a patch only if another plugin is also present.
The API’s loot::DatabaseInterface::LoadLists() method parses metadata files into memory, but does not

3

libloot Documentation, Release latest

evaluate these conditions, so the loaded metadata may contain metadata that is invalid for the installed game that the
loot::DatabaseInterface object being operated on was created for.

2.5 Caching

All unevaluated metadata is cached between calls to loot::DatabaseInterface::LoadLists().

The results of evaluating metadata conditions are cached between calls to loot::GameInterface::LoadPlugins(),
loot::GameInterface::SortPlugins() and loot::DatabaseInterface::GetGeneralMessages().

Plugin content is cached between calls to loot::GameInterface::LoadPlugins() and
loot::GameInterface::SortPlugins().

Load order is cached between calls to loot::GameInterface::LoadCurrentLoadOrderState().

2.6 Performance

The following may involve filesystem access and reading/parsing or writing of data from the filesystem:

• Any function that takes a std::filesystem::path

• loot::GameInterface::IsValidPlugin()

• loot::GameInterface::LoadPlugins()

• loot::GameInterface::LoadCurrentLoadOrderState()

• loot::GameInterface::SetLoadOrder()

Evaluating conditions may also involve filesystem read access.

loot::GameInterface::SortPlugins() is expensive, as it involves loading all the content of all the plugins, apart
from the game’s main master file, which is skipped as an optimisation (it doesn’t depend on anything else and is much
bigger than any other plugin, so is unnecessary and slow to load).

loot::DatabaseInterface::GetGroupsPath() involves building a graph of all defined groups and then using it
to search for the shortest path between the two given groups, which may be relatively slow given a sufficiently large
and/or complex set of group definitions.

All other API functions should be relatively fast.

4 Chapter 2. Miscellaneous Details

CHAPTER

THREE

LOOT’S SORTING ALGORITHM

LOOT’s sorting algorithm consists of the following stages:

• Load plugin data

• Create plugin graph vertices

• Create plugin graph edges

– Hardcoded edges

– Group edges

– Overlap edges

– Tie-break edges

∗ Pinning vertex positions

• Topologically sort the plugin graphs

• Combine the two load orders

3.1 Load plugin data

In this first stage, the plugins to be sorted are parsed and their record IDs (which are FormIDs for all games apart from
Morrowind) are stored. When parsing plugins, all subrecords are skipped over for efficiency, apart from the subrecords
of the TES4 header record.

Loading plugin data also involves loading any metadata that the plugin may have in the masterlist and userlist.

3.2 Create plugin graph vertices

Once the plugins have been loaded, they are sorted into lexicographical order.

After that, two graphs are created, and the plugins are added to them as vertices in their sorted order. Plugins that have
their master flag set go in one graph, and plugins that do not have the flag set go in the other.

Two graphs are used because master-flagged plugins must always load before non-master-flagged plugins, and it’s much
more efficient to sort them separately and then combine their load orders than to enforce those relationships within a
single graph.

A consequence of using two separate graphs is that any plugin data or metadata that involves a pair of plugins with
and without their master flag set will be silently ignored. For example: if plugin A is master-flagged and plugin B is

5

libloot Documentation, Release latest

not, and plugin A has metadata saying it must load after plugin B, then that metadata will be ignored because the two
plugins are sorted independently, as if the other plugin is not installed.

3.3 Create plugin graph edges

The steps described in this section are run on both graphs independently.

In this section, the terms vertex and plugin are used interchangeably, and the iteration order ‘for each plugin’ is the
order in which the vertices were added to the graph.

For each plugin:

1. If the plugin is a master file, add edges going to all non-master files. If the plugin is a non-master file, add edges
coming from all master files. This shouldn’t result in any edges being added, since masters and non-masters are
sorted in separate graphs, but is done for completeness.

2. Add edges coming from all the plugin’s masters. Missing masters have no edges added.

3. Add edges coming from all the plugin’s requirements. Missing requirements have no edges added.

4. Add edges coming from all the plugin’s load after files that are installed plugins.

3.3.1 Hardcoded edges

Some games hardcode certain plugins to load in certain positions, and this section adds edges in the correct order
between those plugins, and between those plugins and the rest of the plugins in the graph.

3.3.2 Group edges

For each plugin, the plugins that are members of groups that the current plugin’s group loads after are iterated over and
individually checked to see if adding an edge from the other group’s plugin to the current plugin would cause a cycle.
If not, the edge is queued for addition. If it would cause a cycle and one of the plugins is in the default group and the
other group’s plugin is master-flagged or the current plugin is not master flagged, then the plugin in the default group
is recorded as one to skip adding edges to or from when the prospective edge involves any of the groups in the path
from the other plugin to the current plugin.

Once all the plugins have been iterated over, all the queued edges are added, skipping those edges identified in the
earlier loop.

At this point the plugin graph is checked for cycles, and an error is thrown if any are encountered, so that metadata (or
indeed plugin data) that cause them can be corrected.

3.3.3 Overlap edges

Plugin overlap edges are then added. Two plugins overlap if they contain the same record, i.e. if they both edit the same
record or if one edits a record the other plugin adds. Plugins also overlap if they both load one or more BSAs (BA2s
for Fallout 4) and the BSAs loaded by one plugin contain data for a file path that is also included in the BSAs loaded
by the other plugin.

For each plugin, skip it if it overrides no records, otherwise iterate over all other plugins.

• If the plugin and other plugin override the same number of records and the same number of assets, or do not
overlap, skip the other plugin.

6 Chapter 3. LOOT’s Sorting Algorithm

libloot Documentation, Release latest

• Otherwise, add an edge from the plugin which overrides more records to the plugin that overrides fewer records,
unless that edge would cause a cycle. If the plugins don’t have overlapping records or override the same number
of records, the edge is added from the plugin that loads more assets via its BSAs to the plugin that loads fewer
assets.

For Morrowind, identifying which records override others requires all of a plugin’s masters to be installed, so if a plugin
has missing masters, its total record count is used in place of its override record count. Morrowind plugins also can’t
load BSAs, so they can’t have overlapping assets.

3.3.4 Tie-break edges

Finally, tie-break edges are added to ensure that sorting is consistent. The graph’s vertices are sorted into their current
load order:

• If both plugins have positions in the current load order, the function preserves their existing relative order.

• If one plugin has a position and the other does not, the plugin with a position goes before the plugin without a
position.

• If neither plugin has a load order position, a case-insensitive lexicographical comparison of their filenames with-
out file extensions is used to decide their order. If they are equal, a case-insensitive lexicographical comparison
of their file extensions is used.

Once sorted, they are iterated over. Each loop looks at the current vertex and the next one following it (e.g. the first
iteration is for vertices 0 and 1, the second is for 1 and 2, etc.).

For each (current, next) pair of vertices, try to find a path from next to current.

If sorting makes no changes, then there won’t be any paths found and it’ll therefore be possible to add an edge from
current to next without causing a cycle, producing the old load order.

If no path is found then that means the old load order can be used for those two plugins. If the current vertex has not
already been processed (which will be the case unless it appeared in a path found earlier and had its position pinned,
see below), append it to a list representing the new load order and record the vertex as having been processed.

If no path is found but the current vertex has been processed and is not the last vertex in the new load order list, pin
the position of the next vertex (see below).

If a path is found then that means the old load order for those two plugins (which is current before next) can’t be
used. If current is the first vertex in the iteration order, then next is simply treated as the start of the new load order.
If current is not the first vertex, iterate over the vertices in the path found, going from next to current, and pin each
vertex’s position.

Pinning vertex positions

A vertex’s position needs to be pinned when it must go somewhere before the last plugin in the new load order list,
because although it has a fixed position relative to that last plugin, it doesn’t necessarily have a fixed position relative
to the plugins that come before the last plugin. I.e. it needs to load earlier, but how much earlier?

To pin a vertex’s position, iterate over the new load order list in reverse order, going from the last vertex towards the first,
and stop at the first load order vertex for which there is no path going from the unpinned vertex to the load order vertex.
This is equivalent to finding the last plugin that the unpinned vertex’s plugin can load after (which is not necessarily
the same as the last plugin it must load after).

If such a load order vertex is found, add an edge going from it to the unpinned vertex. If the found vertex is not the last
vertex in the load order list, also add an edge going from the unpinned vertex to the vertex after the found vertex. Then
record the unpinned vertex’s new position in the new load order list: the vertex is now pinned.

3.3. Create plugin graph edges 7

libloot Documentation, Release latest

3.4 Topologically sort the plugin graphs

This is done for both graphs independently.

Note that edges for explicit interdependencies are the only edges allowed to create cycles. However, the graph is again
checked for cycles to guard against potential logic bugs, and if a cycle is encountered an error is thrown.

Once the graph is confirmed to be cycle-free, a topological sort is performed on the graph, outputting a list of plugins
in their newly-sorted load order.

3.5 Combine the two load orders

Finally, the sorted load order for non-master-flagged plugins is appended to the sorted load order for master-flagged
plugins to give the complete sorted load order.

8 Chapter 3. LOOT’s Sorting Algorithm

CHAPTER

FOUR

API REFERENCE

Contents

• API Reference

– Constants

– Enumerations

– Functions

– Interfaces

– Classes

– Exceptions

– Error Categories

4.1 Constants

constexpr unsigned int loot::LIBLOOT_VERSION_MAJOR = 0
libloot’s major version number.

constexpr unsigned int loot::LIBLOOT_VERSION_MINOR = 22
libloot’s minor version number.

constexpr unsigned int loot::LIBLOOT_VERSION_PATCH = 2
libloot’s patch version number.

4.2 Enumerations

enum loot::EdgeType
An enum representing the different possible types of interactions between plugins or groups.

Values:

enumerator hardcoded

enumerator masterFlag

9

libloot Documentation, Release latest

enumerator master

enumerator masterlistRequirement

enumerator userRequirement

enumerator masterlistLoadAfter

enumerator userLoadAfter

enumerator masterlistGroup

enumerator userGroup

enumerator recordOverlap

enumerator assetOverlap

enumerator tieBreak

enum loot::GameType
Codes used to create database handles for specific games.

Values:

enumerator tes4
The Elder Scrolls IV: Oblivion

enumerator tes5
The Elder Scrolls V: Skyrim

enumerator fo3
Fallout 3

enumerator fonv
Fallout: New Vegas

enumerator fo4
Fallout 4

enumerator tes5se
The Elder Scrolls V: Skyrim Special Edition

enumerator fo4vr
Fallout 4 VR

enumerator tes5vr
Skyrim VR

enumerator tes3
The Elder Scrolls III: Morrowind

enumerator starfield
Starfield

enum loot::LogLevel
Codes used to specify different levels of API logging.

10 Chapter 4. API Reference

libloot Documentation, Release latest

Values:

enumerator trace

enumerator debug

enumerator info

enumerator warning

enumerator error

enumerator fatal

enum loot::MessageType
Codes used to indicate the type of a message.

Values:

enumerator say
A notification message that is of no significant severity.

enumerator warn
A warning message, used to indicate that an issue may be present that the user may wish to act on.

enumerator error
An error message, used to indicate that an issue that requires user action is present.

4.3 Functions

void loot::SetLoggingCallback(std::function<void(LogLevel, const char*)> callback)
Set the callback function that is called when logging.

If this function is not called, the default behaviour is to print messages to the console.

Parameters callback – The function called when logging. The first parameter is the level of the
message being logged, and the second is the message.

bool loot::IsCompatible(const unsigned int major, const unsigned int minor, const unsigned int patch)
Checks for API compatibility.

Checks whether the loaded API is compatible with the given version of the API, abstracting API stability policy
away from clients. The version numbering used is major.minor.patch.

Parameters

• major – The major version number to check.

• minor – The minor version number to check.

• patch – The patch version number to check.

Returns True if the API versions are compatible, false otherwise.

std::unique_ptr<GameInterface> loot::CreateGameHandle(const GameType game, const std::filesystem::path
&game_path, const std::filesystem::path
&game_local_path = "")

Initialise a new game handle.

Creates a handle for a game, which is then used by all game-specific functions.

4.3. Functions 11

libloot Documentation, Release latest

Parameters

• game – A game code for which to create the handle.

• game_path – The relative or absolute path to the directory containing the game’s executable.

• game_local_path – The relative or absolute path to the game’s folder in %LOCALAPPDATA%
or an empty path. If an empty path, the API will attempt to look up the path that
%LOCALAPPDATA% corresponds to. This parameter is provided so that systems lacking that
environmental variable (eg. Linux) can still use the API.

Returns The new game handle.

std::string loot::GetLiblootVersion()
Get the library version.

Returns A string of the form “major.minor.patch”.

std::string loot::GetLiblootRevision()
Get the source control revision that libloot was built from.

Returns A string containing the revision ID.

std::optional<MessageContent> loot::SelectMessageContent(const std::vector<MessageContent> content,
const std::string &language)

Choose a MessageContent object from a vector given a language.

Parameters

• content – The MessageContent objects to choose between.

• language – The locale or language code for the preferred language to select. Locale codes
are of the form [language code]_[country code].

Returns A MessageContent object.

• If the vector only contains a single element, that element is returned.

• If content with a language that exactly matches the given locale or language code is present,
that content is returned.

• If a locale code is given and there is no exact match but content for that locale’s language is
present, that content is returned.

• If a language code is given and there is no exact match but content for a locale in that langauge
is present, that content is returned.

• If no locale or language code matches are found and content in the default language is present,
that content is returned.

• Otherwise, an empty optional is returned.

4.4 Interfaces

class loot::DatabaseInterface
The interface provided by API’s database handle.

12 Chapter 4. API Reference

libloot Documentation, Release latest

Data Reading & Writing

virtual void LoadLists(const std::filesystem::path &masterlist_path, const std::filesystem::path &userlist_path
= "", const std::filesystem::path &masterlist_prelude_path = "") = 0

Loads the masterlist, userlist and masterlist prelude from the paths specified.

Can be called multiple times, each time replacing the previously-loaded data.

Parameters

• masterlist_path – The relative or absolute path to the masterlist file that should be
loaded.

• userlist_path – The relative or absolute path to the userlist file that should be loaded,
or an empty path. If an empty path, no userlist will be loaded.

• masterlist_prelude_path – The relative or absolute path to the masterlist prelude file
that should be loaded. If an empty path, no masterlist prelude will be loaded.

virtual void WriteUserMetadata(const std::filesystem::path &outputFile, const bool overwrite) const = 0
Writes a metadata file containing all loaded user-added metadata.

Parameters

• outputFile – The path to which the file shall be written.

• overwrite – If false and outputFile already exists, no data will be written. Otherwise,
data will be written.

virtual void WriteMinimalList(const std::filesystem::path &outputFile, const bool overwrite) const = 0
Writes a minimal metadata file that only contains plugins with Bash Tag suggestions and/or dirty info, plus
the suggestions and info themselves.

Parameters

• outputFile – The path to which the file shall be written.

• overwrite – If false and outputFile already exists, no data will be written. Otherwise,
data will be written.

Non-plugin Data Access

virtual std::vector<std::string> GetKnownBashTags() const = 0
Gets the Bash Tags that are listed in the loaded metadata lists.

Bash Tag suggestions can include plugins not in this list.

Returns A set of Bash Tag names.

virtual std::vector<Message> GetGeneralMessages(bool evaluateConditions = false) const = 0
Get all general messages listen in the loaded metadata lists.

Parameters evaluateConditions – If true, any metadata conditions are evaluated before the
metadata is returned, otherwise unevaluated metadata is returned. Evaluating general mes-
sage conditions also clears the condition cache before evaluating conditions.

Returns A vector of messages supplied in the metadata lists but not attached to any particular
plugin.

virtual std::vector<Group> GetGroups(bool includeUserMetadata = true) const = 0
Gets the groups that are defined in the loaded metadata lists.

4.4. Interfaces 13

libloot Documentation, Release latest

Parameters includeUserMetadata – If true, any group metadata present in the userlist is in-
cluded in the returned metadata, otherwise the metadata returned only includes metadata from
the masterlist.

Returns An vector of Group objects. Each Group’s name is unique, if a group has masterlist and
user metadata the two are merged into a single group object.

virtual std::vector<Group> GetUserGroups() const = 0
Gets the groups that are defined or extended in the loaded userlist.

Returns An unordered set of Group objects.

virtual void SetUserGroups(const std::vector<Group> &groups) = 0
Sets the group definitions to store in the userlist, overwriting any existing definitions there.

Parameters groups – The unordered set of Group objects to set.

virtual std::vector<Vertex> GetGroupsPath(const std::string &fromGroupName, const std::string
&toGroupName) const = 0

Get the “shortest” path between the two given groups according to their load after metadata.

The “shortest” path is defined as the path that maximises the amount of user metadata involved while
minimising the amount of masterlist metadata involved. It’s not the path involving the fewest groups.

Parameters

• fromGroupName – The name of the source group, that loads earlier.

• toGroupName – The name of the destination group, that loads later.

Returns A vector of Vertex elements representing the path from the source group to the destina-
tion group, or an empty vector if no path exists.

Plugin Data Access

virtual std::optional<PluginMetadata> GetPluginMetadata(const std::string &plugin, bool
includeUserMetadata = true, bool
evaluateConditions = false) const = 0

Get all a plugin’s loaded metadata.

Parameters

• plugin – The filename of the plugin to look up metadata for.

• includeUserMetadata – If true, any user metadata the plugin has is included in the re-
turned metadata, otherwise the metadata returned only includes metadata from the mas-
terlist.

• evaluateConditions – If true, any metadata conditions are evaluated before the meta-
data is returned, otherwise unevaluated metadata is returned. Evaluating plugin metadata
conditions does not clear the condition cache.

Returns If the plugin has metadata, an optional containing that metadata, otherwise an optional
containing no value.

virtual std::optional<PluginMetadata> GetPluginUserMetadata(const std::string &plugin, bool
evaluateConditions = false) const = 0

Get a plugin’s metadata loaded from the given userlist.

Parameters

• plugin – The filename of the plugin to look up user-added metadata for.

14 Chapter 4. API Reference

libloot Documentation, Release latest

• evaluateConditions – If true, any metadata conditions are evaluated before the meta-
data is returned, otherwise unevaluated metadata is returned. Evaluating plugin metadata
conditions does not clear the condition cache.

Returns If the plugin has user-added metadata, an optional containing that metadata, otherwise
an optional containing no value.

virtual void SetPluginUserMetadata(const PluginMetadata &pluginMetadata) = 0
Sets a plugin’s user metadata, overwriting any existing user metadata.

Parameters pluginMetadata – The user metadata you want to set, with plugin.Name() being
the filename of the plugin the metadata is for.

virtual void DiscardPluginUserMetadata(const std::string &plugin) = 0
Discards all loaded user metadata for the plugin with the given filename.

Parameters plugin – The filename of the plugin for which all user-added metadata should be
deleted.

virtual void DiscardAllUserMetadata() = 0
Discards all loaded user metadata for all plugins, and any user-added general messages and known bash
tags.

class loot::GameInterface
The interface provided for accessing game-specific functionality.

Metadata Access

virtual DatabaseInterface &GetDatabase() = 0
Get the database interface used for accessing metadata-related functionality.

Returns A reference to the game’s DatabaseInterface. The reference remains valid for the life-
time of the GameInterface instance.

virtual const DatabaseInterface &GetDatabase() const = 0
Get the database interface used for accessing metadata-related functionality.

Returns A reference to the game’s DatabaseInterface. The reference remains valid for the life-
time of the GameInterface instance.

Plugin Data Access

virtual bool IsValidPlugin(const std::filesystem::path &pluginPath) const = 0
Check if a file is a valid plugin.

The validity check is not exhaustive: it checks that the file extension is .esm or .esp (after trimming any
.ghost extension), and that the TES4 header can be parsed.

Parameters pluginPath – The path to the file to check. Relative paths are resolved relative to
the game’s plugins directory, while absolute paths are used as given.

Returns True if the file is a valid plugin, false otherwise.

virtual void LoadPlugins(const std::vector<std::filesystem::path> &pluginPaths, bool loadHeadersOnly) = 0
Parses plugins and loads their data.

Any previously-loaded plugin data is discarded when this function is called.

Parameters

4.4. Interfaces 15

libloot Documentation, Release latest

• pluginPaths – The plugin paths to load. Relative paths are resolved relative to the game’s
plugins directory, while absolute paths are used as given. Each plugin filename must be
unique within the vector.

• loadHeadersOnly – If true, only the plugins’ TES4 headers are loaded. If false, all records
in the plugins are parsed, apart from the main master file if it has been identified by a
previous call to IdentifyMainMasterFile().

virtual const PluginInterface *GetPlugin(const std::string &pluginName) const = 0
Get data for a loaded plugin.

Parameters pluginName – The filename of the plugin to get data for.

Returns A shared pointer to a const PluginInterface implementation. The pointer is null if the
given plugin has not been loaded.

virtual std::vector<const PluginInterface*> GetLoadedPlugins() const = 0
Get a set of const references to all loaded plugins’ PluginInterface objects.

Returns A set of const PluginInterface references. The references remain valid until the
LoadPlugins() or SortPlugins() functions are next called or this GameInterface is de-
stroyed.

Sorting

virtual void IdentifyMainMasterFile(const std::string &masterFile) = 0
Identify the game’s main master file.

When sorting, LOOT always only loads the headers of the game’s main master file as a performance opti-
misation.

virtual std::vector<std::string> SortPlugins(const std::vector<std::filesystem::path> &pluginPaths) = 0
Calculates a new load order for the game’s installed plugins (including inactive plugins) and outputs the
sorted order.

Pulls metadata from the masterlist and userlist if they are loaded, and reads the contents of each plugin.
No changes are applied to the load order used by the game. This function does not load or evaluate the
masterlist or userlist.

Parameters pluginPaths – The plugin paths to sort, in their current load order. Relative paths
are resolved relative to the game’s plugins directory, while absolute paths are used as given.
Each plugin filename must be unique within the vector.

Returns A vector of the given plugin filenames in their sorted load order.

Load Order Interaction

virtual void LoadCurrentLoadOrderState() = 0
Load the current load order state, discarding any previously held state.

This function should be called whenever the load order or active state of plugins “on disk” changes, so that
the cached state is updated to reflect the changes.

virtual bool IsLoadOrderAmbiguous() const = 0
Check if the load order is ambiguous.

This checks that all plugins in the current load order state have a well-defined position in the “on disk”
state, and that all data sources are consistent. If the load order is ambiguous, different applications may
read different load orders from the same source data.

16 Chapter 4. API Reference

libloot Documentation, Release latest

Returns True if the load order is ambiguous, false otherwise.

virtual std::filesystem::path GetActivePluginsFilePath() const = 0
Gets the path to the file that holds the list of active plugins.

The active plugins file path is often within the game’s local path, but its name and location varies by game
and game configuration, so this function exposes the path that libloot uses.

Returns The file path.

virtual bool IsPluginActive(const std::string &plugin) const = 0
Check if a plugin is active.

Parameters plugin – The filename of the plugin for which to check the active state.

Returns True if the plugin is active, false otherwise.

virtual std::vector<std::string> GetLoadOrder() const = 0
Get the current load order.

Returns A vector of plugin filenames in their load order.

virtual void SetLoadOrder(const std::vector<std::string> &loadOrder) = 0
Set the game’s load order.

Parameters loadOrder – A vector of plugin filenames sorted in the load order to set.

Public Functions

virtual GameType GetType() const = 0
Get the game’s type.

Returns The game’s type.

virtual std::vector<std::filesystem::path> GetAdditionalDataPaths() const = 0
Gets the currently-set additional data paths.

Only Fallout 4 installed from the Microsoft Store is configured with any additional data paths by default,
as its DLC directories are installed outside of the Fallout 4 install path.

virtual void SetAdditionalDataPaths(const std::vector<std::filesystem::path> &additionalDataPaths) = 0
Set additional data paths.

The additional data paths are used when interacting with the load order, evaluating conditions and scanning
for archives (BSA/BA2 depending on the game). Additional data paths are used in the order they are given,
and take precedence over the game’s main data path.

class loot::PluginInterface
Represents a plugin file that has been parsed by LOOT.

4.4. Interfaces 17

libloot Documentation, Release latest

Public Functions

virtual std::string GetName() const = 0
Get the plugin’s filename.

Returns The plugin filename. If the plugin was ghosted when it was loaded, this filename will
be without the .ghost suffix.

virtual std::optional<float> GetHeaderVersion() const = 0
Get the value of the version field in the HEDR subrecord of the plugin’s TES4 record.

Returns The value of the version field, or an empty optional if that value is NaN or could not be
found.

virtual std::optional<std::string> GetVersion() const = 0
Get the plugin’s version number from its description field.

The description field may not contain a version number, or LOOT may be unable to detect it. The descrip-
tion field parsing may fail to extract the version number correctly, though it functions correctly in all known
cases.

Returns An optional containing a version string if one is found, otherwise an optional containing
no value.

virtual std::vector<std::string> GetMasters() const = 0
Get the plugin’s masters.

Returns The plugin’s masters in the same order they are listed in the file.

virtual std::vector<Tag> GetBashTags() const = 0
Get any Bash Tags found in the plugin’s description field.

Returns A set of Bash Tags. The order of elements in the set holds no semantics.

virtual std::optional<uint32_t> GetCRC() const = 0
Get the plugin’s CRC-32 checksum.

Returns An optional containing the plugin’s CRC-32 checksum if the plugin has been fully
loaded, otherwise an optional containing no value.

virtual bool IsMaster() const = 0
Check if the plugin’s master flag is set.

Returns True if the master flag is set, false otherwise.

virtual bool IsLightPlugin() const = 0
Check if the plugin is a light plugin.

Returns True if plugin is a light plugin, false otherwise.

virtual bool IsOverridePlugin() const = 0
Check if the plugin is an override plugin.

Returns True if plugin is an override plugin, false otherwise.

virtual bool IsValidAsLightPlugin() const = 0
Check if the plugin is or would be valid as a light plugin.

Returns True if the plugin is a valid light plugin or would be a valid light plugin, false otherwise.

virtual bool IsValidAsOverridePlugin() const = 0
Check if the plugin is or would be valid as an override plugin.

Returns True if the plugin is a valid override plugin or would be a valid override plugin, false
otherwise.

18 Chapter 4. API Reference

libloot Documentation, Release latest

virtual bool IsEmpty() const = 0
Check if the plugin contains any records other than its TES4 header.

Returns True if the plugin only contains a TES4 header, false otherwise.

virtual bool LoadsArchive() const = 0
Check if the plugin loads an archive (BSA/BA2 depending on the game).

Returns True if the plugin loads an archive, false otherwise.

virtual bool DoRecordsOverlap(const PluginInterface &plugin) const = 0
Check if two plugins contain a record with the same ID.

Parameters plugin – The other plugin to check for overlap with.

Returns True if the plugins both contain at least one record with the same ID, false otherwise.
FormIDs are compared for all games apart from Morrowind, which doesn’t have FormIDs
and so has other identifying data compared.

4.5 Classes

class loot::ConditionalMetadata
A base class for metadata that can be conditional based on the result of evaluating a condition string.

Subclassed by File, Message, Tag

Public Functions

ConditionalMetadata() = default
Construct a ConditionalMetadata object with an empty condition string.

Returns A ConditionalMetadata object.

explicit ConditionalMetadata(const std::string &condition)
Construct a ConditionalMetadata object with a given condition string.

Parameters condition – A condition string, as defined in the LOOT metadata syntax docu-
mentation.

Returns A ConditionalMetadata object.

bool IsConditional() const
Check if the condition string is non-empty.

Returns True if the condition string is not empty, false otherwise.

std::string GetCondition() const
Get the condition string.

Returns The object’s condition string.

class loot::Filename
Represents a case-insensitive filename.

4.5. Classes 19

libloot Documentation, Release latest

Public Functions

Filename() = default
Construct a Filename using an empty string.

Returns A Filename object.

explicit Filename(const std::string &filename)
Construct a Filename using the given string.

Returns A Filename object.

explicit operator std::string() const
Get this Filename as a string.

class loot::File : public ConditionalMetadata
Represents a file in a game’s Data folder, including files in subdirectories.

Public Functions

File() = default
Construct a File with blank name, display and condition strings.

Returns A File object.

explicit File(const std::string &name, const std::string &display = "", const std::string &condition = "", const
std::vector<MessageContent> &detail = {})

Construct a File with the given name, display name and condition strings.

Parameters

• name – The filename of the file.

• display – The name to be displayed for the file in messages, formatted using Common-
Mark.

• condition – The File’s condition string.

• detail – The detail message content, which may be appended to any messages generated
for this file. If multilingual, one language must be English.

Returns A File object.

Filename GetName() const
Get the filename of the file.

Returns The file’s filename.

std::string GetDisplayName() const
Get the display name of the file.

Returns The file’s display name.

std::vector<MessageContent> GetDetail() const
Get the detail message content of the file.

If this file causes an error message to be displayed, the detail message content should be appended to that
message, as it provides more detail about the error (e.g. suggestions for how to resolve it).

class loot::Group
Represents a group to which plugin metadata objects can belong.

20 Chapter 4. API Reference

libloot Documentation, Release latest

Public Functions

Group() = default
Construct a Group with the name “default” and an empty set of groups to load after.

Returns A Group object.

explicit Group(const std::string &name, const std::vector<std::string> &afterGroups = {}, const std::string
&description = "")

Construct a Group with the given name, description and set of groups to load after.

Parameters

• name – The group name.

• afterGroups – The names of groups this group loads after.

• description – A description of the group.

Returns A Group object.

std::string GetName() const
Get the name of the group.

Returns The group’s name.

std::string GetDescription() const
Get the description of the group.

Returns The group’s description.

std::vector<std::string> GetAfterGroups() const
Get the set of groups this group loads after.

Returns A set of group names.

Public Static Attributes

static constexpr const char *DEFAULT_NAME = "default"
The name of the group to which all plugins belong by default.

class loot::Location
Represents a URL at which the parent plugin can be found.

Public Functions

Location() = default
Construct a Location with empty URL and name strings.

Returns A Location object.

explicit Location(const std::string &url, const std::string &name = "")
Construct a Location with the given URL and name.

Parameters

• url – The URL at which the plugin can be found.

• name – A name for the URL, eg. the page or site name.

Returns A Location object.

4.5. Classes 21

libloot Documentation, Release latest

std::string GetURL() const
Get the object’s URL.

Returns A URL string.

std::string GetName() const
Get the object’s name.

Returns The name of the location.

class loot::MessageContent
Represents a message’s localised text content.

Public Functions

MessageContent() = default
Construct a MessageContent object with an empty English message string.

Returns A MessageContent object.

explicit MessageContent(const std::string &text, const std::string &language = DEFAULT_LANGUAGE)
Construct a Message object with the given text in the given language.

Parameters

• text – The message text.

• language – The language that the message is written in.

Returns A MessageContent object.

std::string GetText() const
Get the message text.

Returns A string containing the message text.

std::string GetLanguage() const
Get the message language.

Returns A code representing the language that the message is written in.

Public Static Attributes

static constexpr const char *DEFAULT_LANGUAGE = "en"
The code for the default language assumed for message content, which is “en” (English).

class loot::Message : public ConditionalMetadata
Represents a message with localisable text content.

22 Chapter 4. API Reference

libloot Documentation, Release latest

Public Functions

Message() = default
Construct a Message object of type ‘say’ with blank content and condition strings.

Returns A Message object.

explicit Message(const MessageType type, const std::string &content, const std::string &condition = "")
Construct a Message object with the given type, English content and condition string.

Parameters

• type – The message type.

• content – The English message content text.

• condition – A condition string.

Returns A Message object.

explicit Message(const MessageType type, const std::vector<MessageContent> &content, const std::string
&condition = "")

Construct a Message object with the given type, content and condition string.

Parameters

• type – The message type.

• content – The message content. If multilingual, one language must be English.

• condition – A condition string.

Returns A Message object.

MessageType GetType() const
Get the message type.

Returns The message type.

std::vector<MessageContent> GetContent() const
Get the message content.

Returns The message’s MessageContent objects.

class loot::PluginCleaningData
Represents data identifying the plugin under which it is stored as dirty or clean.

Public Functions

PluginCleaningData() = default
Construct a PluginCleaningData object with zero CRC, ITM count, deleted reference count and deleted
navmesh count values, an empty utility string and no detail.

Returns A PluginCleaningData object.

explicit PluginCleaningData(uint32_t crc, const std::string &utility)
Construct a PluginCleaningData object with the given CRC and utility, zero ITM count, deleted reference
count and deleted navmesh count values and no detail.

Parameters

• crc – The CRC of a plugin.

• utility – The utility that the plugin cleanliness was checked with.

4.5. Classes 23

libloot Documentation, Release latest

Returns A PluginCleaningData object.

explicit PluginCleaningData(uint32_t crc, const std::string &utility, const std::vector<MessageContent>
&detail, unsigned int itm, unsigned int ref, unsigned int nav)

Construct a PluginCleaningData object with the given values.

Parameters

• crc – A clean or dirty plugin’s CRC.

• utility – The utility that the plugin cleanliness was checked with.

• detail – A vector of localised information message strings about the plugin cleanliness.

• itm – The number of Identical To Master records found in the plugin.

• ref – The number of deleted references found in the plugin.

• nav – The number of deleted navmeshes found in the plugin.

Returns A PluginCleaningData object.

uint32_t GetCRC() const
Get the CRC that identifies the plugin that the cleaning data is for.

Returns A CRC-32 checksum.

unsigned int GetITMCount() const
Get the number of Identical To Master records in the plugin.

Returns The number of Identical To Master records in the plugin.

unsigned int GetDeletedReferenceCount() const
Get the number of deleted references in the plugin.

Returns The number of deleted references in the plugin.

unsigned int GetDeletedNavmeshCount() const
Get the number of deleted navmeshes in the plugin.

Returns The number of deleted navmeshes in the plugin.

std::string GetCleaningUtility() const
Get the name of the cleaning utility that was used to check the plugin.

Returns A cleaning utility name, possibly related information such as a version number and/or
a CommonMark-formatted URL to the utility’s download location.

std::vector<MessageContent> GetDetail() const
Get any additional informative message content supplied with the cleaning data, eg. a link to a cleaning
guide or information on wild edits or manual cleaning steps.

Returns A vector of localised MessageContent objects.

class loot::PluginMetadata
Represents a plugin’s metadata.

24 Chapter 4. API Reference

libloot Documentation, Release latest

Public Functions

PluginMetadata() = default
Construct a PluginMetadata object with a blank plugin name and no metadata.

Returns A PluginMetadata object.

explicit PluginMetadata(const std::string &name)
Construct a PluginMetadata object with no metadata for a plugin with the given filename.

Parameters name – The filename of the plugin that the object is constructed for.

Returns A PluginMetadata object.

void MergeMetadata(const PluginMetadata &plugin)
Merge metadata from the given PluginMetadata object into this object.

If an equal metadata object already exists in this PluginMetadata object, it is not duplicated. This object’s
group is replaced by the given object’s group if the latter is explicit.

Parameters plugin – The plugin metadata to merge.

std::string GetName() const
Get the plugin name.

Returns The plugin name.

std::optional<std::string> GetGroup() const
Get the plugin’s group.

Returns An optional containing the name of the group this plugin belongs to if it was explicitly
set, otherwise an optional containing no value.

std::vector<File> GetLoadAfterFiles() const
Get the plugins that the plugin must load after.

Returns The plugins that the plugin must load after.

std::vector<File> GetRequirements() const
Get the files that the plugin requires to be installed.

Returns The files that the plugin requires to be installed.

std::vector<File> GetIncompatibilities() const
Get the files that the plugin is incompatible with.

Returns The files that the plugin is incompatible with.

std::vector<Message> GetMessages() const
Get the plugin’s messages.

Returns The plugin’s messages.

std::vector<Tag> GetTags() const
Get the plugin’s Bash Tag suggestions.

Returns The plugin’s Bash Tag suggestions.

std::vector<PluginCleaningData> GetDirtyInfo() const
Get the plugin’s dirty plugin information.

Returns The PluginCleaningData objects that identify the plugin as dirty.

std::vector<PluginCleaningData> GetCleanInfo() const
Get the plugin’s clean plugin information.

4.5. Classes 25

libloot Documentation, Release latest

Returns The PluginCleaningData objects that identify the plugin as clean.

std::vector<Location> GetLocations() const
Get the locations at which this plugin can be found.

Returns The locations at which this plugin can be found.

void SetGroup(const std::string &group)
Set the plugin’s group.

Parameters group – The name of the group this plugin belongs to.

void UnsetGroup()
Unsets the plugin’s group.

void SetLoadAfterFiles(const std::vector<File> &after)
Set the files that the plugin must load after.

Parameters after – The files to set.

void SetRequirements(const std::vector<File> &requirements)
Set the files that the plugin requires to be installed.

Parameters requirements – The files to set.

void SetIncompatibilities(const std::vector<File> &incompatibilities)
Set the files that the plugin must load after.

Parameters incompatibilities – The files to set.

void SetMessages(const std::vector<Message> &messages)
Set the plugin’s messages.

Parameters messages – The messages to set.

void SetTags(const std::vector<Tag> &tags)
Set the plugin’s Bash Tag suggestions.

Parameters tags – The Bash Tag suggestions to set.

void SetDirtyInfo(const std::vector<PluginCleaningData> &info)
Set the plugin’s dirty information.

Parameters info – The dirty information to set.

void SetCleanInfo(const std::vector<PluginCleaningData> &info)
Set the plugin’s clean information.

Parameters info – The clean information to set.

void SetLocations(const std::vector<Location> &locations)
Set the plugin’s locations.

Parameters locations – The locations to set.

bool HasNameOnly() const
Check if no plugin metadata is set.

Returns True if the group is implicit and the metadata containers are all empty, false otherwise.

bool IsRegexPlugin() const
Check if the plugin name is a regular expression.

Returns True if the plugin name contains any of the characters :*?|, false otherwise.

26 Chapter 4. API Reference

libloot Documentation, Release latest

bool NameMatches(const std::string &pluginName) const
Check if the given plugin name matches this plugin metadata object’s name field.

If the name field is a regular expression, the given plugin name will be matched against it, otherwise the
strings will be compared case-insensitively. The given plugin name must be literal, i.e. not a regular
expression.

Returns True if the given plugin name matches this metadata’s plugin name, false otherwise.

std::string AsYaml() const
Serialises the plugin metadata as YAML.

Returns The serialised plugin metadata.

class loot::Tag : public ConditionalMetadata
Represents a Bash Tag suggestion for a plugin.

Public Functions

explicit Tag() = default
Construct a Tag object with an empty tag name suggested for addition, with an empty condition string.

Returns A Tag object.

explicit Tag(const std::string &tag, const bool isAddition = true, const std::string &condition = "")
Construct a Tag object with the given name, for addition or removal, with the given condition string.

Parameters

• tag – The name of the Bash Tag.

• isAddition – True if the tag should be added, false if it should be removed.

• condition – A condition string.

Returns A Tag object.

bool IsAddition() const
Check if the tag should be added.

Returns True if the tag should be added, false if it should be removed.

std::string GetName() const
Get the tag’s name.

Returns The tag’s name.

class loot::Vertex
A class representing a plugin or group vertex in a path, and the type of the edge to the next vertex in the path if
one exists.

4.5. Classes 27

libloot Documentation, Release latest

Public Functions

explicit Vertex(std::string name)
Construct a Vertex with the given name and no out edge.

Parameters name – The name of the plugin or group that this vertex represents.

explicit Vertex(std::string name, EdgeType outEdgeType)
Construct a Vertex with the given name and out edge type.

Parameters

• name – The name of the plugin or group that this vertex represents.

• outEdgeType – The type of the edge going out from this vertex.

std::string GetName() const
Get the name of the plugin or group.

Returns The name of the plugin or group.

std::optional<EdgeType> GetTypeOfEdgeToNextVertex() const
Get the type of the edge going to the next vertex.

Each edge goes from the vertex that loads earlier to the vertex that loads later.

Returns The edge type.

4.6 Exceptions

class loot::CyclicInteractionError : public runtime_error
An exception class thrown if a cyclic interaction is detected when sorting a load order.

Public Functions

CyclicInteractionError(std::vector<Vertex> cycle)
Construct an exception detailing a plugin or group graph cycle.

Parameters cycle – A representation of the cyclic path.

std::vector<Vertex> GetCycle() const
Get a representation of the cyclic path.

Each Vertex is the name of a graph element (plugin or group) and the type of the edge going to the next
Vertex. The last Vertex has an edge going to the first Vertex.

Returns A vector of Vertex elements representing the cyclic path.

class ConditionSyntaxError : public runtime_error
An exception class thrown if invalid syntax is encountered when parsing a metadata condition.

class FileAccessError : public runtime_error
An exception class thrown if an error is encountered while reading or writing a file.

class loot::UndefinedGroupError : public runtime_error
An exception class thrown if group is referenced but is undefined.

28 Chapter 4. API Reference

libloot Documentation, Release latest

Public Functions

UndefinedGroupError(const std::string &groupName)
Construct an exception for an undefined group.

Parameters groupName – The name of the group that is undefined.

std::string GetGroupName() const
Get the name of the undefined group.

Returns A group name.

4.7 Error Categories

LOOT uses error category objects to identify errors with codes that originate in lower-level libraries.

const std::error_category &loot::libloadorder_category()
Get the error category that can be used to identify system_error exceptions that are due to libloadorder errors.

Returns A reference to the static object of unspecified runtime type, derived from
std::error_category.

4.7. Error Categories 29

libloot Documentation, Release latest

30 Chapter 4. API Reference

CHAPTER

FIVE

CREDITS

libloot is written by Ortham in C++ and makes use of the Boost, esplugin, libloadorder, loot-condition-interpreter,
spdlog and yaml-cpp libraries. The copyright licenses for all of these and libloot itself in Copyright License Texts.

31

https://github.com/Ortham
http://www.boost.org/
https://github.com/Ortham/esplugin
https://github.com/Ortham/libloadorder
https://github.com/loot/loot-condition-interpreter
https://github.com/gabime/spdlog
https://github.com/loot/yaml-cpp

libloot Documentation, Release latest

32 Chapter 5. Credits

CHAPTER

SIX

VERSION HISTORY

6.1 0.22.2 - 2023-11-25

6.1.1 Fixed

• libloot could error when reading the load order if it encountered a game ini file containing single or double quote
or backslash characters, as it attempted to treat them as special characters. Via libloadorder.

6.1.2 Changed

• Updated libloadorder to v15.0.2.

6.2 0.22.1 - 2023-10-06

6.2.1 Changed

• Updated Boost to v1.83.0.

• Updated libloadorder to v15.0.1.

• Updated spdlog to v1.12.0.

• Updated yaml-cpp to v0.8.0+merge-key-support.1.

6.2.2 Fixed

• GameInterface::LoadCurrentLoadOrderState now correctly handles the case where plugin timestamps
matter for load order and two plugins have the same timestamp. The plugins are sorted in ascending filename
order for Starfield and descending filename order for all other games. Via libloadorder.

• GameInterface::LoadCurrentLoadOrderState now sorts installed plugins by timestamp instead of file-
name before they are added to the load order. This ensures that plugins that do not have an explicit load order
position are given a position that matches the game’s behaviour and the behaviour of xEdit and Wrye Bash. Via
libloadorder.

• GameInterface::IsLoadOrderAmbiguous now always returns false for Morrowind, Oblivion, Fallout 3 and
Fallout New Vegas. Via libloadorder.

33

libloot Documentation, Release latest

• GameInterface::IsLoadOrderAmbiguous no longer requires implicitly active plugins to be listed in
plugins.txt for the load order to be unambiguous for Skyrim Special Edition, Skyrim VR, Fallout 4, Fall-
out 4 VR and Starfield. Via libloadorder.

• GameInterface::SetLoadOrder now modifies plugin file modification timestamps to match the given load
order if the game is Fallout 4, Fallout 4 VR or Starfield, and if plugins.txt is being ignored. Via libloadorder.

6.3 0.22.0 - 2023-09-29

6.3.1 Added

• Support for Starfield. A game handle can be obtained for Starfield using loot::GameType::starfield .

• loot::PluginInterface::IsOverridePlugin() and loot::PluginInterface::IsValidAsOverridePlugin()
to support Starfield’s new override plugin type, which does not use up a mod index when active. Override
plugins cannot contain any new records, they can only override records added by their masters.

• libloot can now detect the correct game local path for Microsoft Store installs of Skyrim Special Edition and
Fallout 4, and Epic Games Store installs of Fallout: New Vegas. Via libloadorder.

6.3.2 Fixed

• Only lowercase plugin file extensions were recognised as plugin file extensions when evaluating conditions. Via
loot-condition-interpreter.

• Fallout: New Vegas plugins with corresponding .nam files are now identified as being active. Via libloadorder.

• Plugins activated using the sTestFile1 through sTestFile10 ini file properties are now recognised as being
active for all games other than Morrowind, which does not support those properties. The properties are used by
default in Fallout 3, Fallout: New Vegas and Skyrim Special Edition. Via libloadorder.

• Fallout 4’s Fallout4.ccc and plugins.txt and Fallout 4 VR’s plugins.txt are now ignored when the
game has plugins activated using the sTestFile1 through sTestFile10 ini file properties, to match the games’
behaviour. Via libloadorder.

• When deciding where to look for Oblivion’s plugins.txt, the bUseMyGamesDirectory ini property is now
correctly expected in the [General] section of Oblivion.ini, instead of anywhere in the file. Via libloadorder.

6.4 0.21.0 - 2023-09-13

6.4.1 Added

• loot::GameInterface::GetType()

• A const overload of loot::GameInterface::GetDatabase()

• loot::GameInterface::GetAdditionalDataPaths()

• loot::GameInterface::SetAdditionalDataPaths()

34 Chapter 6. Version History

libloot Documentation, Release latest

6.4.2 Changed

• libloot now supports v0.21 of the metadata syntax.

• loot::GameInterface::IsValidPlugin(), loot::GameInterface::LoadPlugins() and
loot::GameInterface::SortPlugins() now take plugin paths as std::filesystem::path instead
of std::string.

• It is now possible to create a game handle with a game_local_path that does not exist.

• It is now possible to create a game handle with an empty game_local_path on Linux if the game is Morrowind.

• Updated ICU (used by Linux builds) to v71.1.

• Updated libloadorder to v14.2.1.

• Updated loot-condition-interpreter to v3.0.0.

6.4.3 Fixed

• Condition evaluation would only recognise plugin files as plugins if they had lowercase file extensions.

• When reading the list of active plugins for Oblivion, libloot would look for a file named plugins.txt, which
caused inaccurate results on case-sensitive filesystems, as Oblivion writes the file as Plugins.txt.

• The doc comment for loot::GameInterface::SortPlugins() used the wrong parameter name.

• Cross-compiling from Linux to Windows using MinGW-w64.

6.4.4 Removed

• The loot::SimpleMessage struct.

• The loot::ToSimpleMessage() function.

• The loot::ToSimpleMessages() function.

6.5 0.19.4 - 2023-05-06

6.5.1 Added

• Support for the Microsoft Store’s Fallout 4 DLC. The Microsoft Store installs Fallout 4’s DLC to separate di-
rectories outside of the Fallout 4 install path, and the Microsoft Store’s version of Fallout 4 knows to look for
plugins and resources to load in those other directories.

– libloot detects if a copy of Fallout 4 is from the Microsoft Store by checking for the existence of an
appxmanifest.xml file in the given install path, and if found will look for Fallout 4 DLC directories
at their install paths. The DLC install paths used are relative to the game install path because those relative
paths are assumed by the game.

– If a DLC data path exists, load order operations will include plugins in that directory, i.e. DLC plugins will
appear as part of the load order that libloot reads and writes.

– Metadata conditions will check for files in DLC data paths as well as the game’s data path, with DLC paths
checked before the game’s data path to match the order in which the game checks paths.

6.5. 0.19.4 - 2023-05-06 35

libloot Documentation, Release latest

6.5.2 Changed

• loot::GameInterface::IsValidPlugin(), loot::GameInterface::LoadPlugins() and
loot::GameInterface::SortPlugins() now take plugin paths instead of plugin filenames. Relative
paths are interpreted as relative to the game’s data path, so this change is backwards-compatible. Absolute paths
are used as given. The functions take plugin paths as strings to avoid breaking libloot’s binary interface, but
they will be changed to take std::filesystem::path in a future release.

• loot::GameInterface::LoadPlugins() and loot::GameInterface::SortPlugins() now check that
all filenames in the given paths are unique. This was previously implicitly required for correct behaviour but not
explicitly enforced.

6.6 0.19.3 - 2023-03-18

6.6.1 Added

• Support for the Steam and GOG distributions of Enderal: Forgotten Stories and Enderal: Forgotten Stories
(Special Edition), which are total conversion mods for Skyrim and Skyrim Special Edition respectively. This
support means that the game local path does not need to be specified when creating a game handle: when libloot
is given the path to a Skyrim or Skyrim SE installation that is actually an Enderal installation, it is now able to
look up the correct game local path. Via libloadorder.

6.6.2 Fixed

• libloot would deactivate plugins when setting the load order if too many plugins were active. This could cause
unexpected behaviour if later-loading active plugins were sorted to load earlier.

• The path returned by loot::CyclicInteractionError::GetCycle() could include too many vertices, in-
cluding repeated vertices.

6.6.3 Changed

• Updated Boost to v1.81.0.

• Updated libloadorder to v14.0.0.

6.7 0.19.2 - 2023-01-13

6.7.1 Fixed

• libloot v0.19.1 did not take user groups into account when avoiding cycles during sorting, causing unnecessary
cyclic interaction errors.

36 Chapter 6. Version History

libloot Documentation, Release latest

6.7.2 Changed

• Sorting will once more throw a cyclic interaction error if there is any plugin data or metadata that would try to
load a master-flagged plugin after a non-master-flagged plugin. This behaviour was removed as a side-effect of
sorting changes made in libloot v0.19.0.

6.8 0.19.1 - 2023-01-09

6.8.1 Fixed

• Sorting and applying and then sorting again will no longer give a different result for the second sort. libloot
v0.19.0 changed the order in which group and overlap edges were processed to be the current load order: it has
now reverted back to the lexicographical order of plugin filenames.

6.9 0.19.0 - 2023-01-07

6.9.1 Added

• Sorting now takes into account overlapping assets in BSAs/BA2s that are loaded by plugins. If two plugins don’t
make changes to the same record but load BSAs (or BA2s for Fallout 4) that contain data for the same asset path,
the plugin that loads more assets will load first (unless that’s contradicted by higher-priority data and metadata).

• loot::GameInterface::GetActivePluginsFilePath(), which returns the path of the file libloot reads to
determine which plugins are active.

• loot::EdgeType::masterlistGroup, loot::EdgeType::userGroup, loot::EdgeType::recordOverlap
and loot::EdgeType::assetOverlap.

6.9.2 Fixed

• Building libloot using CMake versions older than 3.24.

• A few potential null pointer dereferences.

6.9.3 Changed

• Sorting has been heavily optimised, leading to sorting being about 58 times faster than libloot 0.18.3 with large
load orders:

– The plugin graph used during sorting has been split in two. As a result, any plugin data or metadata that
would previously caused a cyclic interaction error due to contradicting a plugin’s master flag being set is
now silently ignored instead.

– The tie-breaking stage has been completely overhauled. As a result, some ties may now be broken differently
to how they were broken in previous versions of libloot.

– loot::GameInterface::LoadPlugins() now checks plugin validity in parallel.

• Cyclic interaction errors now distinguish between group edges that involve user metadata and those that don’t.

• PluginInterface::DoFormIDsOverlap() has been renamed to loot::PluginInterface::DoRecordsOverlap().

• loot::CyclicInteractionError::GetCycle() is now const.

6.8. 0.19.1 - 2023-01-09 37

libloot Documentation, Release latest

• loot::UndefinedGroupError::GetGroupName() is now const.

• Linux builds are now built using GCC 10 and now link against the tbb library.

6.9.4 Removed

• EdgeType::group

• EdgeType::overlap

6.10 0.18.3 - 2022-12-13

6.10.1 Fixed

• Resolved a CMake warning relating to policy CMP0135 when building libloot.

• Some of the documentation on not operators in the metadata syntax was outdated.

• The libloot Windows DLL did not include some file info fields that are required according to Microsoft’s doc-
umentation. The CompanyName, FileDescription, InternalName, OriginalFilename and ProductName
fields have been added.

• The libloot Windows DLL advertised its FILETYPE as VFT_APP, which has been changed to VFT_DLL.

6.10.2 Changed

• Sorting optimisations mean that sorting is now significantly faster (over 5 times faster in testing).

• Log message severities have been adjusted to reduce the verbosity at the “info” level and to move some messages
between “debug” and “trace”.

• Release build archive names no longer include the output of git describe.

• Updated spdlog to v1.11.0.

6.11 0.18.2 - 2022-10-11

6.11.1 Fixed

• libloot will now use the correct local app data path for the Epic Games Store distribution of Skyrim Special
Edition when no local app data path is passed to loot::CreateGameHandle(). Via libloadorder.

38 Chapter 6. Version History

libloot Documentation, Release latest

6.11.2 Changed

• Updated libloadorder to v13.3.0.

6.12 0.18.1 - 2022-10-01

6.12.1 Fixed

• libloot will now use the correct local app data path for the GOG distribution of Skyrim Special Edition when no
local app data path is passed to loot::CreateGameHandle(). Via libloadorder.

• If Oblivion’s Oblivion.ini could not be found or read, or if it did not contain the bUseMyGamesDirectory
setting, the game’s install path would be used as the parent directory for plugins.txt. libloot now correctly
defaults to using the game’s local app data directory, and only uses the install path if bUseMyGamesDirectory=0
is found. Via libloadorder.

6.12.2 Changed

• When serialising plugin metadata as YAML, LOOT now:

– Puts url before group

– Serialises single-element lists using the flow style if the element would be serialised as a scalar value

– Pads CRC hexadecimal values to always be 8 characters long (excluding the 0x prefix)

– Uses uppercase letters in CRC hexadecimal values.

• Updated esplugin to v4.0.0.

• Updated Google Test to v1.12.1.

• Updated libloadorder to v13.2.0.

• Updated loot-condition-interpreter to v2.3.1.

• Updated spdlog to v1.10.0.

6.13 0.18.0 - 2022-02-27

6.13.1 Added

• loot::Group::DEFAULT_NAME gives the default group name as a compile-time constant.

• loot::ToSimpleMessages turns a std::vector<Message> into a std::vector<SimpleMessage> for a
given language.

• loot::GameInterface::IsLoadOrderAmbiguous() exposes libloadorder’s lo_is_ambiguous() function.

6.12. 0.18.1 - 2022-10-01 39

libloot Documentation, Release latest

6.13.2 Fixed

• loot::SimpleMessage now uses an in-class initialiser to ensure that its type member variable is always ini-
tialised.

• Added missing virtual destructors to loot::GameInterface, loot::DatabaseInterface and
loot::PluginInterface.

• Two versions that only differ by the presence and absence of pre-release identifiers were not correctly compared
according to Semantic Versioning, which states that 1.0.0-alpha is less than 1.0.0. Via loot-condition-interpreter.

• Some missing API documentation and formatting issues.

6.13.3 Changed

• loot::CreateGameHandle() now returns a std::unique_ptr<GameInterface> instead of a
std::shared_ptr<GameInterface>.

• loot::GameInterface::GetDatabase() now returns a DatabaseInterface& instead of a
std::shared_ptr<DatabaseInterface>.

• loot::GameInterface::GetPlugin() now returns a const PluginInterface* instead of a
std::shared_ptr<const PluginInterface>.

• loot::GameInterface::GetLoadedPlugins() now returns a std::vector<const PluginInterface*>
instead of a std::vector<std::shared_ptr<const PluginInterface>>.

• MessageContent::defaultLanguage has been replaced with loot::MessageContent::DEFAULT_LANGUAGE,
which is a compile-time constant.

• File::ChooseDetail(), Message::GetContent(const std::string& language),
MessageContent::Choose() and PluginCleaningData::ChooseDetail() have been replaced with
loot::SelectMessageContent().

• Message::ToSimpleMessage() has been replaced with loot::ToSimpleMessage.

• LootVersion has been replaced with loot::LIBLOOT_VERSION_MAJOR , loot::LIBLOOT_VERSION_MINOR ,
loot::LIBLOOT_VERSION_PATCH , loot::GetLiblootVersion() and loot::GetLiblootRevision().

• loot::File::GetDisplayName() is now a trivial accessor that only ever returns the value of the display name
member variable and performs no character escaping.

• loot::CyclicInteractionError and loot::UndefinedGroupError have had their const member vari-
ables made non-const.

• loot::ConditionalMetadata, loot::File, loot::Filename, loot::Group, loot::Location,
loot::Message, loot::MessageContent, loot::PluginCleaningData, loot::PluginMetadata and
loot::Tag have had their user-defined default constructors replaced by use of in-class initialisers and defaulted
default constructors.

• The < and == operator overloads for loot::File, loot::Group, loot::Location, loot::Message,
loot::MessageContent, loot::PluginCleaningData and loot::Tag have become non-member func-
tions.

• The performance of loot::PluginMetadata::NameMatches() has been greatly improved by not constructing
a new regex object every time the function is called.

• Mentions of GitHub Flavored Markdown have been replaced with CommonMark, as LOOT now uses the latter
instead of the former.

• Updated loot-condition-interpreter to v2.3.0.

40 Chapter 6. Version History

libloot Documentation, Release latest

6.13.4 Removed

• ConditionalMetadata::ParseCondition()

• PluginMetadata::NewMetadata()

• All Git-related functionality has been removed, including the libgit2 dependency and the following API items:

– loot::UpdateFile()

– loot::GetFileRevision()

– loot::IsLatestFile()

– loot::libgit2_category()

– loot::GitStateError

– loot::FileRevision

6.14 0.17.3 - 2022-01-02

6.14.1 Added

• PluginMetadata::AsYaml can be used to serialise plugin metadata as YAML.

6.14.2 Changed

• Plugin name regular expression objects are now cached between calls to DatabaseInterface::LoadLists.

6.15 0.17.2 - 2021-12-24

6.15.1 Fixed

• A missing <string> include in include/loot/struct/simple_message.h.

• Invalid configuration causing Read The Docs to fail to build the documentation.

6.15.2 Changed

• Updated libgit2 to v1.3.0.

6.16 0.17.1 - 2021-11-13

6.16.1 Fixed

• Out-of-bounds array access that could occur in some situations and which could cause crashes in Linux builds.

6.14. 0.17.3 - 2022-01-02 41

libloot Documentation, Release latest

6.17 0.17.0 - 2021-09-24

6.17.1 Added

• DatabaseInterface::LoadLists now accepts an optional third parameter that is the path to a masterlist
prelude file to load. If loaded, it will be used to replace the value of the prelude in the loaded masterlist (if the
masterlist has a prelude).

• The Message class has gained a constructor that takes a SimpleMessage.

• The File class has been gained support for the metadata structure’s new detail field, adding:

– An optional const std::vector<MessageContent>& parameter to the multiple-parameter constructor.

– A new File::GetDetail member function.

– A new File::ChooseDetail member function.

6.17.2 Changed

• MasterlistInfo has been renamed to FileRevision, and its revision_id and revision_date fields are
now named id and date respectively.

• The UpdateMasterlist, GetMasterlistRevision and IsLatestMasterlistmember functions have been
moved out of DatabaseInterface and are now free functions named UpdateFile, GetFileRevision and
IsLatestFile respectively.

• PluginInterface::GetHeaderVersion now returns a std::optional<float> instead of a float. The
return value is std::nullopt if no header version field was found or if its value was NaN.

• Sorting now checks for cycles before adding overlap edges, so that any cycles are caught before the slowest steps
in the sorting process.

• PluginCleaningData::GetInfo() has been renamed to PluginCleaningData::GetDetail().

• PluginCleaningData::ChooseInfo() has been renamed to PluginCleaningData::ChooseDetail().

• All API functions that returned a MessageContent or SimpleMessage now return a
std::optional<MessageContent> or std::optional<SimpleMessage> respectively. This affects
the following member functions:

– Message::GetContent

– Message::ToSimpleMessage

– MessageContent::Choose

– PluginCleaningData::ChooseDetail

• Updated libgit2 to v1.1.1.

• Updated Google Test to v1.11.0.

• Updated spdlog to v1.9.2.

• Updated yaml-cpp to v0.7.0+merge-key-support.1.

42 Chapter 6. Version History

libloot Documentation, Release latest

6.17.3 Removed

• PluginInterface::IsLightMaster

• PluginInterface::IsValidAsLightMaster

• Updating the masterlist no longer reloads it, the masterlist must now be reloaded separately.

• Masterlist update no longer supports rolling back through revisions until a revision that can be successfully loaded
is found.

6.18 0.16.3 - 2021-05-06

6.18.1 Added

• PluginInterface::IsLightPlugin as a more accurately named equivalent to
PluginInterface::IsLightMaster.

• PluginInterface::IsValidAsLightPlugin as a more accurately named equivalent to
PluginInterface::IsValidAsLightMaster.

• Support for parsing inverted metadata conditions (not (<expression>)). Note however that this is not yet
part of any released version of LOOT’s metadata syntax and must not be used where compatibility with older
releases of LOOT is required. Via loot-condition-interpreter.

6.18.2 Changed

• loot::MessageContent::Choose now compares locale and language codes so that if an exact match is not
present but a more or less specific match is present, that will be preferred over the default language message
content.

• Regular expression functions in metadata conditions now handle ghosted plugins in the same way as their path
function counterparts.

• Updated esplugin to v3.5.0.

• Updated libloadorder to v13.0.0.

• Updated loot-condition-interpreter to v2.2.1.

• Updated spdlog to v1.8.5.

6.18.3 Fixed

• .ghost file extensions are no longer recursively trimmed when checking if a file has a valid plugin file extension
during metadata condition evaluation. Via loot-condition-interpreter.

• When looking for a plugin file matching a path during metadata condition evaluation, a .ghost extension is only
added to the path if one was not already present. Via loot-condition-interpreter.

• When comparing versions during metadata condition evaluation, the comparison now compares numeric against
non-numeric release identifiers (and vice versa) by comparing the numeric value against the numeric value of
leading digits in the non-numeric value, and treating the latter as greater if the two numeric values are equal.
The numeric value is treated as less than the non-numeric value if the latter has no leading digits. Previously
all non-numeric identifiers were always greater than any numeric identifier. For example, 78b was previously
considered to be greater than 86, but is now considered to be less than 86. Via loot-condition-interpreter.

6.18. 0.16.3 - 2021-05-06 43

libloot Documentation, Release latest

• Linux builds did not correctly handle case-insensitivity of plugin names during sorting on filesystems with case
folding enabled.

6.18.4 Deprecated

• PluginInterface::IsLightMaster: use PluginInterface::IsLightPlugin instead.

• PluginInterface::IsValidAsLightMaster: use PluginInterface::IsValidAsLightPlugin instead.

6.19 0.16.2 - 2021-02-13

6.19.1 Changed

• Updated libgit2 to v1.1.0.

• Updated loot-condition-interpreter to v2.1.2.

• Updated Boost to v1.72.0.

• Linux releases are now built on GitHub Actions.

• Masterlist updates can no longer be fetched using SSH URLs. This support was never tested or documented.

6.20 0.16.1 - 2020-08-22

6.20.1 Fixed

• File::GetDisplayName() now escapes ASCII punctuation characters when returning the file’s name, i.e.
when no display name is explicitly set. For example, File("plugin.esp").GetDisplayName() will now
return plugin\.esp.

6.21 0.16.0 - 2020-07-12

6.21.1 Added

• The !=, >, <= and >= comparison operators are now implemented for loot::File, loot::Location,
loot::Message, loot::MessageContent, loot::PluginCleaningData and loot::Tag.

• The !=, <, >, <= and >= comparison operators are now implemented for loot::Group.

• A new Filename class for representing strings handled as case-insensitive filenames.

• PluginMetadata::NameMatches() checks if the given plugin filename matches the plugin name of the meta-
data object it is called on. If the plugin metadata name is a regular expression, the given plugin filename will be
matched against it, otherwise the comparison is case-insensitive equality.

44 Chapter 6. Version History

libloot Documentation, Release latest

6.21.2 Changed

• File::GetName() now returns a Filename instead of a std::string.

• GetGroups and GetUserGroups now return std::vector<Group> instead of
std::unordered_set<Group>.

• SetUserGroups now takes a const std::vector<Group>& instead of a const
std::unordered_set<std::string>&.

• loot::Group’s three-argument constructor now takes a const std::vector<std::string>& instead of a
const std::unordered_set<std::string>& as its second parameter.

• GetAfterGroups now returns a std::vector<std::string> instead of a
std::unordered_set<std::string>.

• std::set<> usage has been replaced by std::vector<> throughout the public API. This affects the following
functions:

– PluginInterface::GetBashTags()

– DatabaseInterface::GetKnownBashTags()

– GameInterface::GetLoadedPlugins()

– PluginMetadata::GetLoadAfterFiles()

– PluginMetadata::SetLoadAfterFiles()

– PluginMetadata::GetRequirements()

– PluginMetadata::SetRequirements()

– PluginMetadata::GetIncompatibilities()

– PluginMetadata::SetIncompatibilities()

– PluginMetadata::GetTags()

– PluginMetadata::SetTags()

– PluginMetadata::GetDirtyInfo()

– PluginMetadata::SetDirtyInfo()

– PluginMetadata::GetCleanInfo()

– PluginMetadata::SetCleanInfo()

– PluginMetadata::GetLocations()

– PluginMetadata::SetLocations()

• loot::File, loot::Location, loot::Message, loot::MessageContent,
loot::PluginCleaningData, loot::Tag and loot::Group now implement their comparison opera-
tors by comparing all their fields (including inherited fields), using the same operator for the fields. For example,
comparing two loot::File objects using == will now compare each of their fields using ==.

• When loading plugins, the speed at which LOOT identifies their corresponding archive files (*.bsa or .ba2,
depending on the game) has been improved.

6.21. 0.16.0 - 2020-07-12 45

libloot Documentation, Release latest

6.21.3 Removed

• PluginMetadata::IsEnabled() and PluginMetadata::SetEnabled(), as it is no longer possible to dis-
able plugin metadata (though doing so never had any effect).

• PluginMetadata no longer implements the == or != comparison operators.

• std::hash is no longer specialised for loot::Group.

6.21.4 Fixed

• LoadsArchive now correctly identifies the BSAs that a Skyrim SE or Skyrim VR loads. This assumes that
Skyrim VR plugins load BSAs in the same way as Skyrim SE. Previously LOOT would use the same rules as
the Fallout games for Skyrim SE or VR, which was incorrect.

• Some operations involving loaded plugins or copies of game interface objects could potentially cause data races
due to a lack of mutex locking in some data read operations.

• Copying a game interface object did not copy its cached archive files, leaving the new copy with no cached
archive files.

6.22 0.15.2 - 2020-06-14

6.22.1 Changed

• MergeMetadata now only uses the group value of the given metadata object if there is not already one set,
matching the behaviour for all other merged metadata.

• Updated esplugin to v3.3.1.

• Updated libgit2 to v1.0.1.

• Updated loot-condition-interpreter to v2.1.1.

• Updated spdlog to v1.6.1.

6.22.2 Fixed

• GetPluginMetadata preferred masterlist metadata over userlist metadata when merging them, which was the
opposite of the intended behaviour.

6.23 0.15.1 - 2019-12-07

6.23.1 Changed

• The range of FormIDs that are recognised as valid in light masters has been extended for Fallout 4 plugins,
from between 0x800 and 0xFFF inclusive to between 0x001 and 0xFFF inclusive, to reflect the extended range
supported by Fallout 4 v1.10.162.0.0. The valid range for Skyrim Special Edition plugins is unchanged. Via
esplugin.

• Updated esplugin to v3.3.0.

46 Chapter 6. Version History

libloot Documentation, Release latest

6.24 0.15.0 - 2019-11-05

6.24.1 Changed

• libloot now supports v0.15 of the metadata syntax.

• The order of the plugins passed to SortPlugins is now used as the current load order during sorting. The order
of plugins passed in did not previously have any impact.

• Constructors for the following classes and structs are now explicit:

– loot::ConditionalMetadata

– loot::File

– loot::Group

– loot::Location

– loot::Message

– loot::MessageContent

– loot::PluginCleaningData

– loot::PluginMetadata

– loot::Tag

– loot::MasterlistInfo

– loot::Vertex

• Updated loot-condition-interpreter to v2.1.0.

• Updated spdlog to v1.4.2.

6.24.2 Removed

• InitialiseLocale()

• PluginMetadata::GetLowercasedName()

• PluginMetadata::GetNormalizedName()

6.24.3 Fixed

• libloot was unable to extract versions from plugin descriptions containing version: followed by whitespace
and one or more digits.

• libloot did not error if masterlist metadata defined a group that loaded after another group that was not defined
in the masterlist, but which was defined in user metadata. This was unintentional, and now all groups mentioned
in masterlist metadata must now be defined in the masterlist.

• Build errors on Linux using GCC 9 and ICU 61+.

6.24. 0.15.0 - 2019-11-05 47

libloot Documentation, Release latest

6.25 0.14.10 - 2019-09-06

6.25.1 Changed

• Improved the sorting process for Morrowind. Previously, sorting was unable to determine if a Morrowind plugin
contained any records overriding those of its masters, and so added no overlap edges between Morrowind plugins
when sorting. Sorting now counts override records by comparing plugins against their masters, giving the same
results as for other games.

However, unlike for other games, this requires all a plugin’s masters to be installed. If a plugin’s masters are
missing, the plugin’s total record count will be used as if it was the plugin’s override record count to ensure that
sorting can still proceed, albeit with potentially reduced accuracy.

• Updated esplugin to v3.2.0.

• Updated libgit2 to v0.28.3.

6.26 0.14.9 - 2019-07-23

6.26.1 Fixed

• Regular expressions in condition strings are now prefixed with ^ and suffixed with $ before evaluation to ensure
that only exact matches to the given expression are found. Via loot-condition-interpreter.

6.26.2 Changed

• Updated loot-condition-interpreter to v2.0.0.

6.27 0.14.8 - 2019-06-30

6.27.1 Fixed

• Evaluating version() and product_version() conditions will no longer error if the given executable has no
version fields. Instead, it will be evaluated as having no version. Via loot-condition-interpreter.

• Sorting would not preserve the existing relative positions of plugins that had no relative positioning enforced
by plugin data or metadata, if one or both of their filenames were not case-sensitively equal to their entries in
plugins.txt / loadorder.txt. Load order position comparison is now correctly case-insensitive.

6.27.2 Changed

• Improved load order sorting performance.

• Updated loot-condition-interpreter to v2.0.0.

48 Chapter 6. Version History

libloot Documentation, Release latest

6.28 0.14.7 - 2019-06-13

6.28.1 Fixed

• Filename comparisons on Windows now has the same locale-invariant case insensitivity behaviour as Windows
itself, instead of being locale-dependent.

• Filename comparisons on Linux now use ICU case folding to give locale-invariant results that are much closer
to Windows’ case insensitivity, though still not identical.

6.28.2 Changed

• Updated libgit2 to v0.28.2.

6.29 0.14.6 - 2019-04-24

6.29.1 Added

• Support for TES III: Morrowind using GameType::tes3. The sorting process for Morrowind is slightly different
than for other games, because LOOT cannot currently detect when plugins overlap. As a result, LOOT is much
less likely to suggest load order changes.

6.29.2 Changed

• Updated esplugin to v2.1.2.

• Updated loot-condition-interpreter to v1.3.0.

6.29.3 Fixed

• LOOT would unnecessarily ignore intermediate plugins in a non-master to master cycle involving groups, leading
to unexpected results when sorting plugins.

6.30 0.14.5 - 2019-02-27

6.30.1 Changed

• Updated libgit2 to v0.28.1.

• Updated libloadorder to v12.0.1.

• Updated spdlog to v1.3.1.

6.28. 0.14.7 - 2019-06-13 49

libloot Documentation, Release latest

6.30.2 Fixed

• HearthFires.esm was not recognised as a hardcoded plugin on case-sensitive filesystems, causing a cyclic
interaction error when sorting Skyrim or Skyrim SE (via libloadorder).

6.31 0.14.4 - 2019-01-27

6.31.1 Added

• Added UnsetGroup to PluginMetadata.

6.32 0.14.3 - 2019-01-27

6.32.1 Changed

• Condition parsing now errors if it does not consume the whole condition string. Via loot-condition-interpreter.

• Removed a few unhelpful log statements and changed the verbosity level of others.

• Updated loot-condition-interpreter to v1.2.2.

6.32.2 Fixed

• Conditions were not parsed past the first instance of file(<regex>), active(<regex>), many(<regex>) or
many_active(<regex>). Via loot-condition-interpreter.

• loot::CreateGameHandle() could crash when trying to check if the given paths are symlinks. If a check fails,
LOOT will assume the path is not a symlink.

6.33 0.14.2 - 2019-01-20

6.33.1 Changed

• Updated loot-condition-interpreter to v1.2.1.

• Updated spdlog to v1.3.0.

6.33.2 Fixed

• An error when loading plugins with a file present in the plugins directory that has a filename containing characters
that cannot be represented in the system code page.

• An error when trying to read the version of an executable that does not have a US English version information re-
source. Executable versions are now read from the file’s first version information resource, whatever its language.
Via loot-condition-interpreter.

50 Chapter 6. Version History

libloot Documentation, Release latest

6.34 0.14.1 - 2018-12-23

6.34.1 Changed

• Updated loot-condition-interpreter to v1.2.0.

6.34.2 Fixed

• Product version conditions read from executables’ VS_FIXEDFILEINFO structure, so the versions read did not
match the versions displayed by Windows’ File Explorer. Product versions are now read from executables’
VS_VERSIONINFO structure, using the ProductVersion key. Via loot-condition-interpreter.

• The release date in the metadata syntax changelog for v0.14 was “Unreleased”.

6.35 0.14.0 - 2018-12-09

6.35.1 Added

• GetHeaderVersion to get the value of the version field in the HEDR subrecord of a plugin’s TES4 record.

• IsValidAsLightMaster to check if a light master is valid or if a non-light-master plugin would be valid with
the light master flag or .esl extension. Validity is defined as having no new records with a FormID object index
greater than 0xFFF.

• GetGroupsPath to return the path between two given groups that maximises the user metadata and minimises
the masterlist metadata involved.

• loot::Vertex to represent a plugin or group vertex in a sorting graph path.

• loot::EdgeType to represent the type of the edge between two vertices in a sorting graph. Each edge type
indicates the type of data it was sourced from.

6.35.2 Changed

• Renamed the library from “the LOOT API” to “libloot” to avoid confusion between the name of the library and
the API that it provides. The library filename is changed so that the loot_api part is now loot, e.g. loot.dll
on Windows and libloot.so on Linux.

• CyclicInteractionError has had its constructor and methods completely replaced to provide a more detailed
and flexible representation of the cyclic path that it reports.

• UndefinedGroupError::getGroupName() has been renamed to UndefinedGroupError::GetGroupName()
for consistency with other API method names.

• LootVersion::string() has been renamed to LootVersion::GetVersionString() for consistency with
other API method names.

• GetPluginMetadata and GetPluginUserMetadata now return std::optional<PluginMetadata> to dif-
ferentiate metadata being found or not. Note that the PluginMetadata value may still return true for
HasNameOnly if a metadata entry exists but has no content other than the plugin name.

• GetGroup now returns std::optional<std::string> to indicate when there is no group metadata explicitly
set, to simplify distinguishing between explicit and implicit default group membership.

6.34. 0.14.1 - 2018-12-23 51

libloot Documentation, Release latest

• GetVersion now returns std::optional<std::string> to differentiate between there being no version and
the version being an empty string, though the latter should never occur.

• GetCRC now returns std::optional<uint32_t> to differentiate between there being no CRC calculated and
the CRC somehow being zero (which should never occur).

• Filesystem paths are now represented in the API by std::filesystem::path values instead of std::string
values. This affects the following functions:

– loot::CreateGameHandle()

– LoadLists

– WriteUserMetadata

– WriteMinimalList

– UpdateMasterlist

– GetMasterlistRevision

– IsLatestMasterlist

• The metadata condition parsing, evaluation and caching code and the pseudosem dependency have been replaced
by a dependency on loot-condition-interpreter, which provides more granular caching and more opportunity for
future enhancements.

• The API now supports v0.14 of the metadata syntax.

• Updated C++ version required to C++17. This means that Windows builds now require the MSVC 2017 runtime
redistributable to be installed.

• Updated esplugin to v2.1.1.

• Updated libloadorder to v12.0.0.

• Updated libgit2 to v0.27.7.

• Updated spdlog to v1.2.1.

6.35.3 Removed

• PluginInterface::GetLowercasedName(), as the case folding behaviour LOOT uses is not necessarily ap-
propriate for all use cases, so it’s up to the client to lowercase according to their own needs.

6.35.4 Fixed

• BSAs/BA2s loaded by non-ASCII plugins for Oblivion, Fallout 3, Fallout: New Vegas and Fallout 4 may not
have been detected due to incorrect case-insensitivity handling.

• Fixed incorrect case-insensitivity handling for non-ASCII plugin filenames and File metadata names.

• FileVersion and ProductVersion properties were not set in the DLL since v0.11.0.

• Path equivalence checks could be inaccurate as they were using case-insensitive string comparisons, which may
not match filesystem behaviour. Filesystem equivalence checks are now used to improve correctness.

• Errors due to filesystem permissions when cloning a new masterlist repository into an existing game directory.
Deleting the temporary directory is now deferred until after its contents have been copied into the game directory,
and if an error is encountered when deleting the temporary directory, it is logged but does not cause the masterlist
update to fail.

52 Chapter 6. Version History

https://github.com/loot/loot-condition-interpreter

libloot Documentation, Release latest

• An error creating a game handle for Skyrim if loadorder.txt is not encoded in UTF-8. In this case, li-
bloadorder will now fall back to interpreting its contents as encoded in Windows-1252, to match the behaviour
when reading the load order state.

6.36 0.13.8 - 2018-09-24

6.36.1 Fixed

• Filesystem errors when trying to set permissions during a masterlist update that clones a new repository.

6.37 0.13.7 - 2018-09-10

6.37.1 Changed

• Significantly improve plugin loading performance by scanning for BSAs/BA2s once instead of for each plugin.

• Improve performance of metadata evaluation by caching CRCs with the same cache lifetime as condition results.

• Improve performance of sorting when it involves long plugin interaction chains.

• Updated esplugin to v2.0.1.

• Updated libgit2 to v0.27.4.

• Updated libloadorder v11.4.1.

• Updated spdlog to v1.1.0.

• Updated yaml-cpp to 0.6.2+merge-key-support.2.

6.37.2 Fixed

• Fallout 4’s DLCUltraHighResolution.esm is now handled as a hardcoded plugin (via libloadorder).

6.38 0.13.6 - 2018-06-29

6.38.1 Changed

• Tweaked masterlist repository cloning to avoid undefined behaviour.

• Updated Boost to v1.67.0.

• Updated esplugin to v2.0.0.

• Updated libgit2 to v0.27.2.

• Updated libloadorder to v11.4.0.

6.36. 0.13.8 - 2018-09-24 53

libloot Documentation, Release latest

6.39 0.13.5 - 2018-06-02

6.39.1 Changed

• Sorting now enforces hardcoded plugin positions, sourcing them through libloadorder. This avoids the need for
often very verbose metadata entries, particularly for Creation Club plugins.

• Updated libgit2 to v0.27.1. This includes a security fix for CVE-2018-11235, but LOOT API’s usage is not
susceptible. libgit2 is not susceptible to CVE-2018-11233, another Git vulnerability which was published on the
same day.

• Updated libloadorder to v11.3.0.

• Updated spdlog to v0.17.0.

• Updated esplugin to v1.0.10.

6.40 0.13.4 - 2018-06-02

6.40.1 Fixed

• NewMetadata now uses the passed plugin’s group if the calling plugin’s group is implicit, and sets the group to
be implicit if the two plugins’ groups are equal.

6.41 0.13.3 - 2018-05-26

6.41.1 Changed

• Improved cycle avoidance when resolving evaluating plugin groups during sorting. If enforcing the group differ-
ence between two plugins would cause a cycle and one of the plugins’ groups is the default group, that plugin’s
group will be ignored for all plugins in groups between default and the other plugin’s group.

• The masterlist repository cloning process no longer moves LOOT’s game folders, so if something goes wrong
the process fails more safely.

• The LOOT API is now built with debugging information on Windows, and its PDB is included in build archives.

• Updated libloadorder to v11.2.2.

6.41.2 Fixed

• Various filesystem-related issues that could be encountered when updating masterlists, including failure due to
file handles being left open while attempting to remove.

• Building the esplugin and libloadorder dependencies using Rust 1.26.0, which included a regression to workspace
builds.

54 Chapter 6. Version History

https://github.com/rust-lang/cargo/issues/5518

libloot Documentation, Release latest

6.42 0.13.2 - 2018-04-29

6.42.1 Changed

• Updated libloadorder to v11.2.1.

6.42.2 Fixed

• Incorrect load order positions were given for light-master-flagged .esp plugins when getting the load order (via
libloadorder).

6.43 0.13.1 - 2018-04-09

6.43.1 Added

• Support for Skyrim VR using GameType::tes5vr.

6.43.2 Changed

• Updated libloadorder to v11.2.0.

6.44 0.13.0 - 2018-04-02

6.44.1 Added

• Group metadata as a replacement for priority metadata. Each plugin belongs to a group, and a group can load
after other groups. Plugins belong to the default group by default.

– Added the loot::Group class to represent a group.

– Added loot::UndefinedGroupError.

– Added GetGroups, GetUserGroups and SetUserGroups.

– Added GetGroup, IsGroupExplicit and SetGroup.

– Updated MergeMetadata to replace the existing group with the given object’s group if the latter is explicit.

– Updated NewMetadata to return an object using the called object’s group.

– Updated HasNameOnly to check the group is implicit.

– Updated SortPlugins to take into account plugin groups.

6.42. 0.13.2 - 2018-04-29 55

libloot Documentation, Release latest

6.44.2 Changed

• LoadPlugins and SortPlugins no longer load the current load order state, so LoadCurrentLoadOrderState
must be called separately.

• Updated libgit2 to v0.27.0.

• Updated libloadorder to v11.1.0.

6.44.3 Removed

• Support for local and global plugin priorities.

– Removed the loot::Priority class.

– Removed PluginMetadata::GetLocalPriority(), PluginMetadata::GetGlobalPriority(),
PluginMetadata::SetLocalPriority() and PluginMetadata::SetGlobalPriority()

– Priorities are no longer taken into account when sorting plugins.

6.44.4 Fixed

• An error when applying a load order for Morrowind, Oblivion, Fallout 3 or Fallout: New Vegas when a plugin
had a timestamp earlier than 1970-01-01 00:00:00 UTC (via libloadorder).

• An error when loading the current load order for Skyrim with a loadorder.txt incorrectly encoded in
Windows-1252 (via libloadorder).

6.45 0.12.5 - 2018-02-17

6.45.1 Changed

• Updated esplugin to v1.0.9.

• Updated libgit2 to v0.26.3. This enables TLS 1.2 support on Windows 7, so users shouldn’t need to manually
enable it themselves.

6.46 0.12.4 - 2018-02-17

6.46.1 Fixed

• Loading or saving a load order could be very slow because the plugins directory was scanned recursively, which
is unnecessary. In the reported case, this fix caused saving a load order to go from 23 seconds to 43 milliseconds
(via libloadorder).

• Plugin parsing errors were being logged with trace severity, they are now logged as errors.

• Saving a load order for Oblivion, Fallout 3 or Fallout: New Vegas now updates plugin access times to the current
time for correctness (via libloadorder).

56 Chapter 6. Version History

libloot Documentation, Release latest

6.46.2 Changed

• GameInterface::SetLoadOrder() now errors if passed a load order that does not contain all installed plugins.
The previous behaviour was to append any missing plugins, but this was undefined and could cause unexpected
results (via libloadorder).

• Performance improvements for load order operations, benchmarked at 2x to 150x faster (via libloadorder).

• Updated mentions of libespm in error messages to mention esplugin instead.

• Updated libloadorder to v11.0.1.

• Updated spdlog to v0.16.3.

6.47 0.12.3 - 2018-02-04

6.47.1 Added

• Support for Fallout 4 VR via the new loot::GameType::fo4vr game type.

6.47.2 Fixed

• loot::CreateGameHandle() no longer accepts an empty game path string, and no longer has a default value
for its game path parameter, as using an empty string as the game path is invalid and always causes an exception
to be thrown.

6.47.3 Changed

• Added an empty string as the default value of loot::InitialiseLocale’s string parameter.

• Updated esplugin to v1.0.8.

• Updated libloadorder to v10.1.0.

6.48 0.12.2 - 2017-12-24

6.48.1 Fixed

• Plugins with a .esp file extension that have the light master flag set are no longer treated as masters when sorting,
so they can have other .esp files as masters without causing cyclic interaction sorting errors.

6.47. 0.12.3 - 2018-02-04 57

libloot Documentation, Release latest

6.48.2 Changed

• Downgraded Boost to 1.63.0 to take advantage of pre-built binaries on AppVeyor.

6.49 0.12.1 - 2017-11-23

6.49.1 Added

• Support for identifying Creation Club plugins using Skyrim.ccc and Fallout4.ccc (via libloadorder).

6.49.2 Changed

• Update esplugin to v1.0.7.

• Update libloadorder to v10.0.4.

6.50 0.12.0 - 2017-11-03

6.50.1 Added

• Support for light master (.esl) plugins.

• LoadCurrentLoadOrderState in loot::GameInterface to expose load order cache management to clients,
as libloadorder no longer internally manages it.

• loot::SetLoggingCallback() to allow clients to handle the LOOT API’s logging statements themselves.

• Logging of libloadorder error details.

6.50.2 Changed

• LoadPlugins now loads the current load order state before loading plugins.

• Added a condition string field to SimpleMessage.

• Replaced libespm dependency with esplugin v1.0.6. This significantly improves safety and sorting performance,
especially for large load orders.

• Updated libloadorder to v10.0.3. This significantly improves safety and the performance of load order operations,
at the expense of exposing cache management to the client.

• Replaced Boost.Log with spdlog v0.14.0, removing dependencies on several other Boost libraries in the process.

• Updated libgit2 to v0.26.0.

• Update Boost to v1.65.1.

58 Chapter 6. Version History

libloot Documentation, Release latest

6.50.3 Removed

• DatabaseInterface::EvalLists() as it was superseded in v0.11.0 by the ability to evaluate conditions when
getting general messages and individual plugins’ metadata, which is more efficient.

• SetLoggingVerbosity() and SetLogFile() as they have been superseded by the new
loot::SetLoggingCallback() function.

• The loot/yaml/* headers containing LOOT’s internal YAML conversion functions are no longer exposed
alongside the API headers.

• The loot/windows_encoding_converters.h header is no longer exposed alongside the API headers.

6.50.4 Fixed

• Formatting in metadata documentation.

• Saving metadata wrote entries in an inconsistent order.

• Clang build errors.

6.51 0.11.1 - 2017-06-19

6.51.1 Fixed

• A crash would occur when loading an plugin that had invalid data past its header. Such plugins are now just
silently ignored.

• loot::CreateGameHandle()would not resolve game or local data paths that are junction links correctly, which
caused problems later when trying to perform actions such as loading plugins.

• Performing a masterlist update on a branch where the remote and local histories had diverged would fail. The
existing local branch is now discarded and the remote branch checked out anew, as intended.

6.52 0.11.0 - 2017-05-13

6.52.1 Added

• New functions to loot::DatabaseInterface:

– WriteUserMetadata

– GetKnownBashTags

– GetGeneralMessages

– GetPluginMetadata

– GetPluginUserMetadata

– SetPluginUserMetadata

– DiscardPluginUserMetadata

– DiscardAllUserMetadata

– IsLatestMasterlist

6.51. 0.11.1 - 2017-06-19 59

libloot Documentation, Release latest

• A loot::GameInterface pure abstract class that exposes methods for accessing game-specific functionality.

• A loot::PluginInterface pure abstract class that exposes methods for accessing plugin file data.

• The loot::SetLoggingVerbosity and loot::SetLogFile functions and loot::LogVerbosity enum for
controlling the API’s logging behaviour.

• An loot::InitialiseLocale function that must be called to configure the API’s locale before any of its other
functionality is used.

• LOOT’s internal metadata classes are now exposed as part of the API.

6.52.2 Changed

• Renamed loot::CreateDatabase() to loot::CreateGameHandle(), and changed its signature so
that it returns a shared pointer to a loot::GameInterface instead of a shared pointer to a
loot::DatabaseInterface.

• Moved SortPlugins into loot::GameInterface.

• Some loot::DatabaseInterface methods are now const:

– WriteMinimalList

– GetMasterlistRevision

• LOOT’s internal YAML conversion functions have been refactored into the include/loot/yaml directory, but
they are not really part of the API. They’re only exposed so that they can be shared between the API and LOOT
application without introducing another component.

• LOOT’s internal string encoding conversion functions have been refactored into the include/loot/
windows_encoding_converters.h header, but are not really part of the API. They’re only exposed so that
they can be shared between the API and LOOT application without introducing another component.

• Metadata is now cached more efficiently, reducing the API’s memory footprint.

• Log timestamps now have microsecond precision.

• Updated to libgit2 v0.25.1.

• Refactored code only useful to the LOOT application out of the API internals and into the application source
code.

6.52.3 Removed

• DatabaseInterface::GetPluginTags(), DatabaseInterface::GetPluginMessages() and
DatabaseInterface::GetPluginCleanliness() have been removed as they have been superseded
by DatabaseInterface::GetPluginMetadata().

• The GameDetectionError class, as it is no longer thrown by the API.

• The PluginTags struct, as it is no longer used.

• The LanguageCode enum, as the API now uses ISO language codes directly instead.

• The PluginCleanliness enum. as it’s no longer used. Plugin cleanliness should now be checked by getting
a plugin’s evaluated metadata and checking if any dirty info is present. If none is present, the cleanliness is
unknown. If dirty info is present, check if any of the English info strings contain the text “Do not clean”: if not,
the plugin is dirty.

• The LOOT API no longer caches the load order, as this is already done more accurately by libloadorder (which
is used internally).

60 Chapter 6. Version History

libloot Documentation, Release latest

6.52.4 Fixed

• Libgit2 error details were not being logged.

• A FileAccessError was thrown when the masterlist path was an empty string. The API now just skips trying to
load the masterlist in this case.

• Updating the masterlist did not update the cached metadata, requiring a call to LoadLists.

• The reference documentation was broken due to an incompatibility between Sphinx 1.5.x and Breathe 4.4.

6.53 0.10.3 - 2017-01-08

6.53.1 Added

• Automated 64-bit API builds.

6.53.2 Changed

• Replaced std::invalid_argument exceptions thrown during condition evaluation with
ConditionSyntaxError exceptions.

• Improved robustness of error handling when calculating file CRCs.

6.53.3 Fixed

• Documentation was not generated correctly for enums, exceptions and structs exposed by the API.

• Added missing documentation for CyclicInteractionError methods.

6.54 0.10.2 - 2016-12-03

6.54.1 Changed

• Updated libgit2 to 0.24.3.

6.54.2 Fixed

• A crash could occur if some plugins that are hardcoded to always load were missing. Fixed by updating to
libloadorder v9.5.4.

• Plugin cleaning metadata with no info value generated a warning message with no text.

6.53. 0.10.3 - 2017-01-08 61

libloot Documentation, Release latest

6.55 0.10.1 - 2016-11-12

No API changes.

6.56 0.10.0 - 2016-11-06

6.56.1 Added

• Support for TES V: Skyrim Special Edition.

6.56.2 Changed

• Completely rewrote the API as a C++ API. The C API has been reimplemented as a wrapper around the C++
API, and can be found in a separate repository.

• Windows builds now have a runtime dependency on the MSVC 2015 runtime redistributable.

• Rewrote the API documentation, which is now hosted online at Read The Docs.

• The Windows release archive includes the .lib file for compile-time linking.

• LOOT now supports v0.10 of the metadata syntax. This breaks compatibility with existing syntax. See the syntax
version history for the details.

• Updated libgit2 to 0.24.2.

6.56.3 Removed

• The loot_get_tag_map() function has no equivalent in the new C++ API as it is obsolete.

• The loot_apply_load_order() function has no equivalent in the new C++ API as it just passed through to
libloadorder, which clients can use directly instead.

6.56.4 Fixed

• Database creation was failing when passing paths to symlinks that point to the game and/or game local paths.

• Cached plugin CRCs causing checksum conditions to always evaluate to false.

• Updating the masterlist when the user’s TEMP and TMP environmental variables point to a different drive than the
one LOOT is installed on.

6.57 0.9.2 - 2016-08-03

6.57.1 Changed

• libespm (2.5.5) and Pseudosem (1.1.0) dependencies have been updated to the versions given in brackets.

62 Chapter 6. Version History

https://github.com/loot/loot-api-c
https://loot.readthedocs.io

libloot Documentation, Release latest

6.57.2 Fixed

• The packaging script used to create API archives was packaging the wrong binary, which caused the v0.9.0 and
v0.9.1 API releases to actually be re-releases of a snapshot build made at some point between v0.8.1 and v0.9.0:
the affected API releases were taken offline once this was discovered.

• loot_get_plugin_tags() remembering results and including them in the results of subsequent calls.

• An error occurred when the user’s temporary files directory didn’t exist and updating the masterlist tried to create
a directory there.

• Errors when reading some Oblivion plugins during sorting, including the official DLC.

6.58 0.9.1 - 2016-06-23

No API changes.

6.59 0.9.0 - 2016-05-21

6.59.1 Changed

• Moved API header location to the more standard include/loot/api.h.

• Documented LOOT’s masterlist versioning system.

• Made all API outputs fully const to make it clear they should not be modified and to avoid internal const casting.

• The loot_db type is now an opaque struct, and functions that used to take it as a value now take a pointer to it.

6.59.2 Removed

• The loot_cleanup() function, as the one string it used to destroy is now stored on the stack and so destroyed
when the API is unloaded.

• The loot_lang_any constant. The loot_lang_english constant should be used instead.

6.60 0.8.1 - 2015-09-27

6.60.1 Changed

• Safety checks are now performed on file paths when parsing conditions (paths must not reference a location
outside the game folder).

• Updated Boost (1.59.0), libgit2 (0.23.2) and CEF (branch 2454) dependencies.

6.58. 0.9.1 - 2016-06-23 63

libloot Documentation, Release latest

6.60.2 Fixed

• A crash when loading plugins due to lack of thread safety.

• The masterlist updater and validator not checking for valid condition and regex syntax.

• The masterlist updater not working correctly on Windows Vista.

6.61 0.8.0 - 2015-07-22

6.61.1 Added

• Support for metadata syntax v0.8.

6.61.2 Changed

• Improved plugin loading performance for computers with weaker multithreading capabilities (eg. non-
hyperthreaded dual-core or single-core CPUs).

• LOOT no longer outputs validity warnings for inactive plugins.

• Updated libgit2 to v0.23.0.

6.61.3 Fixed

• Many miscellaneous bugs, including initialisation crashes and incorrect metadata input/output handling.

• LOOT silently discarding some non-unique metadata: an error will now occur when loading or attempting to
apply such metadata.

• LOOT’s version comparison behaviour for a wide variety of version string formats.

6.62 0.7.1 - 2015-06-22

6.62.1 Fixed

• “No existing load order position” errors when sorting.

• Output of Bash Tag removal suggestions in loot_write_minimal_list().

6.63 0.7.0 - 2015-05-20

Initial API release.

64 Chapter 6. Version History

CHAPTER

SEVEN

INTRODUCTION

The metadata syntax is what LOOT’s masterlists and userlists are written in. If you know YAML, good news: the
syntax is essentially just YAML 1.2. If you don’t know YAML, then its Wikipedia page is a good introduction. All you
really need to know is:

• How lists and associative arrays (key-value maps) are written.

• That whitespace is important, and that only normal spaces (ie. no non-breaking spaces or tabs) count as such.

• That data entries that are siblings must be indented by the same amount, and child data nodes must be indented
further than their parents (see the example later in this document if you don’t understand).

• That YAML files must be written in a Unicode encoding.

• That each key in a key-value map must only appear once per map object.

An important point that is more specific to how LOOT uses YAML:

• Strings are case-sensitive, apart from file paths, regular expressions and checksums.

• File paths are evaluated relative to the game’s Data folder.

• File paths cannot reference a path outside of the game’s folder structure, ie. they cannot contain the substring
../../.

In this document, where a value’s type is given as X list this is equivalent to a YAML sequence of values which are of
the data type X. Where a value’s type is given as X set, this is equivalent to a YAML sequence of unique values which
are of the data type X. Uniqueness is determined using the equality criteria for that data type. All the non-standard data
types that LOOT’s metadata syntax uses have their equality criteria defined later in this document.

Some strings are interpreted as CommonMark: where this is the case, the strings are interpreted according to version
0.29 of the specification.

65

https://en.wikipedia.org/wiki/YAML
https://spec.commonmark.org/0.29/

libloot Documentation, Release latest

66 Chapter 7. Introduction

CHAPTER

EIGHT

METADATA FILE STRUCTURE

The root of a metadata file is a key-value map. LOOT will recognise the following keys, none of which are required.
Other keys may also be present, but are not processed by LOOT.

prelude
The prelude can have any value, but if a masterlist prelude path is provided when loading metadata, the masterlist’s
prelude value will be replaced by the parsed content of the masterlist prelude file. The prelude exists so that
metadata that is common across different masterlists can be shared without duplication.

Note that prelude replacement is only supported when using YAML’s block style and an unquoted prelude
key that is not preceded by a mapping key indicator and that is immediately followed by a colon separator, i.e.
prelude:.

bash_tags
string list

A list of Bash Tags that are supported by the game. These Bash Tags are used to provide autocomplete suggestions
in LOOT’s metadata editor.

globals
message list

A list of message data structures for messages that are displayed independently of any plugin.

groups
group set

A set of group data structures that represent the groups that plugins can belong to.

plugins
plugin list and plugin set

The plugin data structures that hold all the plugin metadata within the file. It is a mixture of a list and a set
because no non-regex plugin value may be equal to any other non-regex plugin value , but there may be
any number of equal regex plugin values, and non-regex plugin values may be equal to regex plugin values. If
multiple plugin values match a single plugin, their metadata is merged in the order the values are listed, and as
defined in Merging Behaviour.

The message and plugin data structures are detailed in the next section.

67

libloot Documentation, Release latest

8.1 Example

prelude:
- &thanksForUsing
type: say
content: 'Thanks for using LOOT!'

bash_tags:
- 'C.Climate'
- 'Relev'

globals:
- *thanksForUsing

groups:
- name: 'Map Markers'
after:
- 'default'

plugins:
- name: 'Armamentarium.esm'
tag:
- Relev

- name: 'ArmamentariumFran.esm'
tag:
- Relev

- name: 'Beautiful People 2ch-Ed.esm'
tag:
- Eyes
- Graphics
- Hair
- R.Relations

- name: 'More Map Markers.esp'
group: 'Map Markers'

68 Chapter 8. Metadata File Structure

CHAPTER

NINE

DATA STRUCTURES

LOOT expects metadata to be laid out using a certain set of data structures, described in this section.

9.1 Tag

LOOT metadata files can contain suggestions for the addition or removal of Bash Tags, and this is the structure used
for them. It has two forms: a key-value string map and a scalar string.

9.1.1 Map Form

name
Required. A Bash Tag, prefixed with a minus sign if it is suggested for removal.

condition
A condition string that is evaluated to determine whether this Bash Tag should be suggested: if it evaluates to
true, the Tag is suggested, otherwise it is ignored. See Condition Strings for details. If undefined, defaults to an
empty string.

9.1.2 Scalar Form

The scalar form is simply the value of the map form’s name key. Using the scalar form is equivalent to using the map
form with an undefined condition key.

9.1.3 Equality

Two tag data structures are equal if all their fields are equal. String equality is case-sensitive.

9.1.4 Examples

Scalar form:

Relations

Map form:

name: -Relations
condition: 'file("Mart''s Monster Mod for OOO.esm") or file("FCOM_Convergence.esm")'

69

libloot Documentation, Release latest

9.2 File

This structure can be used to hold file paths. It has two forms: a key-value string map and a scalar string.

9.2.1 Map Form

name
Required. An exact (ie. not regex) file path or name.

display
A CommonMark string, to be displayed instead of the file path in any generated messages, eg. the name of the
mod the file belongs to.

detail
string or localised content list

if this file causes an error message to be displayed (e.g. because it’s a missing requirement), this detail message
content will be appended to that error message. If a string is provided, it will be interpreted as CommonMark. If
a localised content list is provided, one of the structures must be for English. If undefined, defaults to an empty
string.

condition
A condition string that is evaluated to determine whether this file data should be used: if it evaluates to true, the
data is used, otherwise it is ignored. See Condition Strings for details.

9.2.2 Scalar Form

The scalar form is simply the value of the map form’s name key. Using the scalar form is equivalent to using the map
form with undefined display and condition keys.

9.2.3 Equality

Two file data structures are equal if all their fields are equal. name field equality is case-insensitive, the other fields use
case-sensitive equality.

9.2.4 Examples

Scalar form:

'../obse_loader.exe'

Map form:

name: '../obse_loader.exe'
condition: 'version("../obse_loader.exe", "0.0.18.0", >=)'
display: 'OBSE v18+'

70 Chapter 9. Data Structures

libloot Documentation, Release latest

9.3 Group

Groups represent sets of plugins, and are a way to concisely and extensibly load sets of plugins after other sets of
plugins.

This structure can be used to hold group definitions. It is a key-value map.

name
string

Required. A case-sensitive name that identifies the group.

description
string

A CommonMark description of the group, e.g. what sort of plugins it contains. If undefined, the description is
an empty string.

after
string set

The names of groups that this group loads after. Group names are case-sensitive. If undefined, the set is empty.
The named groups must be defined when LOOT sorts plugins, but they don’t need to be defined in the same
metadata file.

Sorting errors will occur if:

• A group loads after another group that does not exist.

• Group loading is cyclic (e.g. A loads after B and B loads after A).

9.3.1 Merging Groups

When a group definition for an already-defined group is encountered, the description field is replaced if the new
value is not an empty string, and the after sets of the two definitions are merged.

9.3.2 The default Group

There is one predefined group named default that all plugins belong to by default. It is defined with an empty after
set, as no other predefined groups exist for it to load after.

Like any other group, the default group can be redefined to add group names to its after set.

9.3.3 Equality

Two group data structures are equal if the values of their name keys are identical.

9.3. Group 71

libloot Documentation, Release latest

9.3.4 Examples

Create a group for map marker plugins that loads after the predefined
'default' group.
name: 'Map Markers'
description: 'A group for map marker plugins that need to load late.'
after:
- 'default'

Extend the predefined 'default' group to load after an 'Unofficial Patches'
group that is defined elsewhere.
name: 'default'
after:
- 'Unofficial Patches'

9.4 Localised Content

The localised content data structure is a key-value string map.

text
Required. The CommonMark message content string.

lang
Required. The language that text is written in, given as a code of the form ll or ll_CC, where ll is an ISO
639-1 language code and CC is an ISO 3166 country code. For example,

Language Code
Bulgarian bg
Chinese (Simplified) zh_CN
Czech cs
Danish da
English en
Finnish fi
French fr
German de
Italian it
Japanese ja
Korean ko
Polish pl
Portuguese pt_PT
Portuguese (Brazil) pt_BR
Russian ru
Spanish es
Swedish sv
Ukrainian uk_UA

72 Chapter 9. Data Structures

libloot Documentation, Release latest

9.4.1 Equality

Two localised content data structures are equal if all their fields are equal. Field equality is case-sensitive.

9.5 Message

Messages are given as key-value maps.

type
string

Required. The type string can be one of three keywords.

say
A generic message, useful for miscellaneous notes.

warn
A warning message, describing a non-critical issue with the user’s mods (eg. dirty mods).

error
An error message, decribing a critical installation issue (eg. missing masters, corrupt plugins).

content
string or localised content list

Required. Either simply a CommonMark string, or a list of localised content data structures. If the latter, one
of the structures must be for English.

condition
string

A condition string that is evaluated to determine whether the message should be displayed: if it evaluates to true,
the message is displayed, otherwise it is not. See Condition Strings for details.

subs
string list

A list of CommonMark strings to be substituted into the message content string. The content string must use
numbered specifiers ({0}, {1}, etc.), where the numbers correspond to the position of the substitution string in
this list to use, to denote where these strings are to be substituted.

9.5.1 Language Support

If a message’s content value is a string, the message will use the string as its content if displayed. Otherwise, the first
localised content structure with a language or locale code that matches LOOT’s current language will be used as the
message’s content if displayed. If there are no exact matches, LOOT will try to find a close match.

If LOOT’s current language uses a locale code, it will display the first structure with the same language code, but not
another locale code with the same language code. For example, if LOOT’s current language has locale code pt_BR, it
will display the first structure with language code pt (but not locale code pt_PT) if none exist with locale code pt_BR.

If LOOT’s current language has a language code, it will display the first structure with a locale code that contains that
language code. For example, if LOOT’s current language has language code pt, it will display the first structure with
locale code pt_PT or pt_BR if none exist with language code pt.

If there are no exact or close matches, then the first structure in English will be used.

9.5. Message 73

libloot Documentation, Release latest

9.5.2 Equality

Two message data structures are equal if their type, content and condition fields are equal, after any subs values have
been substituted into content strings. If the content field is a string, it is treated as a localised content list containing a
single English-language string. String equality is case sensitive.

9.5.3 Examples

type: say
content:
- lang: en
text: 'An example link: <http://www.example.com>'

- lang: zh_CN
text: ': <http://www.example.com>'

condition: 'file("foo.esp")'

would be displayed as

• : http://www.example.com

if the current language was Simplified Chinese and foo.esp was installed, while

type: say
content: 'An alternative [example link](http://www.example.com), with no translations.'

would be displayed as

• An alternative example link, with no translations.

In English,

type: say
content: 'A newer version of {0} [is available]({1}).'
subs:
- 'this plugin'
- 'http://www.example.com'

would be displayed as

• A newer version of this plugin is available.

9.6 Location

This data structure is used to hold information on where a plugin is hosted online. It has two forms: a key-value string
map and a scalar string.

74 Chapter 9. Data Structures

http://www.example.com
http://www.example.com
http://www.example.com

libloot Documentation, Release latest

9.6.1 Map Form

link
Required. A URL at which the plugin is found.

name
A descriptive name for the URL, which may be used as hyperlink text. If undefined, defaults to an empty string.

9.6.2 Scalar Form

The scalar form is simply the value of the map form’s link key. Using the scalar form is equivalent to using the map
form with an undefined name key.

9.6.3 Equality

Two location data structures are equal if all their fields are equal. Field equality is case-sensitive.

9.6.4 Examples

Scalar form:

'https://www.nexusmods.com/skyrim/mods/71214'

Map form:

link: 'https://www.nexusmods.com/skyrim/mods/71214'
name: 'USLEEP on Skyrim Nexus'

9.7 Cleaning Data

This structure holds information on which versions of a plugin are dirty or clean, and if dirty, how many identical-to-
master records, deleted records and deleted navmeshes (if applicable) it contains. Cleaning data is given as a key-value
map.

crc
hexadecimal integer

Required. The CRC-32 checksum of the plugin. If the plugin is dirty, this needs to be the CRC of the plugin
before before cleaning. LOOT displays the CRCs of installed plugins in its report. The 8-character CRC should
be preceded by 0x so that it is interpreted correctly.

util
string

Required. The utility that was used to check the plugin for dirty edits. If available, the version of the utility used
should also be included (e.g. TES5Edit v3.11). The string will be interpreted as CommonMark.

detail
string or localised content list

A message that will be displayed to the user. If a string is provided, it will be interpreted as CommonMark. If
a localised content list is provided, one of the structures must be for English. This is only used if the plugin is
dirty, and is intended for providing cleaning instructions to the user. If undefined, defaults to an empty string.

9.7. Cleaning Data 75

libloot Documentation, Release latest

itm
integer

The number of identical-to-master records reported for the dirty plugin. If undefined, defaults to zero.

udr
integer

The number of undeleted records reported for the dirty plugin. If undefined, defaults to zero.

nav
integer

The number of deleted navmeshes reported for the dirty plugin. If undefined, defaults to zero.

9.7.1 Equality

Two plugin cleaning data structures are equal if all their fields are equal. util field equality is case-sensitive. If the
detail field is a string, it is treated as a localised content data structure.

9.7.2 Examples

A dirty plugin:

crc: 0x3DF62ABC
util: '[TES5Edit](http://www.nexusmods.com/skyrim/mods/25859) v3.1.1'
detail: 'A cleaning guide is available [here](http://www.creationkit.com/index.php?
→˓title=TES5Edit_Cleaning_Guide_-_TES5Edit).'
itm: 4
udr: 160

A clean plugin:

crc: 0x2ABC3DF6
util: '[TES5Edit](http://www.nexusmods.com/skyrim/mods/25859) v3.1.1'

9.8 Plugin

This is the structure that brings all the others together, and forms the main component of a metadata file. It is a key-value
map.

name
string

Required. Can be an exact plugin filename or a regular expression plugin filename. If the filename contains any
of the characters :*?|, the string will be treated as a regular expression, otherwise it will be treated as an exact
filename. For example, Example\.esm will be treated as a regular expression, as it contains a \ character.

Regular expression plugin filenames must be written in modified ECMAScript syntax.

group
string

The name of the group the plugin belongs to. If unspecified, defaults to default.

76 Chapter 9. Data Structures

https://en.cppreference.com/w/cpp/regex/ecmascript

libloot Documentation, Release latest

The named group must be exist when LOOT sorts plugins, but doesn’t need to be defined in the same metadata
file. If at sort time the group does not exist, a sorting error will occur.

The plugin must load after all the plugins in the groups its group is defined to load after, resolving them recur-
sively. An exception exists if doing so would introduce a cyclic dependency between two plugins without any
other group loading rules applied.

For example, if for plugins A.esp, B.esp, C.esp and D.esp:

• B.esp has A.esp as a master

• A.esp is in group A

• B.esp and C.esp are in the default group

• D.esp is in group D

• group A loads after the default group

• the default group loads after group D

Then the load order must be D.esp, C.esp, A.esp, B.esp. Although A.esp’s group must load after B.esp’s group,
this would cause a cycle between A.esp and B.esp, so the requirement is ignored for that pair of plugins.

However, if for plugins A.esp, B.esp and C.esp in groups of the same names:

1. group B loads after group A

2. group C loads after group B

3. A.esp has C.esp as a master

This will cause a sorting error, as neither group rule introduces a cyclic dependency when combined in isolation
with the third rule, but having all three rules applied causes a cycle.

after
file set

Plugins that this plugin must load after, but which are not dependencies. Used to resolve specific compatibility
issues. If undefined, the set is empty.

Note: since an after entry uses a file structure, its name value can’t be a regex. This applies to req & inc
entries too.

req
file set

Files that this plugin requires to be present. This plugin will load after any plugins listed. If any of these files are
missing, an error message will be displayed. Intended for use specifying implicit dependencies, as LOOT will
detect a plugin’s explicit masters itself. If undefined, the set is empty.

Note: if a condition is used in a req entry, a requirement message will only be displayed if the file isn’t present
and the condition is true.

inc
file set

Files that this plugin is incompatible with. If any of these files are present, an error message will be displayed.
If undefined, the set is empty.

msg
message list

The messages attached to this plugin. The messages will be displayed in the order that they are listed. If undefined,
the list is empty.

9.8. Plugin 77

libloot Documentation, Release latest

tag
tag set

Bash Tags suggested for this plugin. If a Bash Tag is suggested for both addition and removal, the latter will
override the former when the list is evaluated. If undefined, the set is empty.

url
location set

An unordered set of locations for this plugin. If the same version can be found at multiple locations, only one
location should be recorded. If undefined, the set is empty. This metadata is not currently used by LOOT.

dirty
cleaning data set

An unordered set of cleaning data structures for this plugin, identifying dirty plugins.

clean
cleaning data set

An unordered set of cleaning data structures for this plugin, identifying clean plugins. The itm, udr and nav
fields are unused in this context, as they’re assumed to be zero.

9.8.1 Equality

The equality of two plugin data structures is determined by comparing the values of their name keys.

• If neither or both values are regular expressions, then the plugin data structures are equal if the lowercased values
are identical.

• If one value is a regular expression, then the plugin data structures are equal if the other value is an exact match
for it.

9.8.2 Merging Behaviour

Key Merge Behaviour (merging B into A)
name Not merged.
group Replaced by B’s value only if A has no value set.
after Merged. If B’s file set contains an item that is equal to one already present in A’s file set, B’s item is

discarded.
req Merged. If B’s file set contains an item that is equal to one already present in A’s file set, B’s item is

discarded.
inc Merged. If B’s file set contains an item that is equal to one already present in A’s file set, B’s item is

discarded.
msg Merged. B’s message list is appended to A’s message list.
tag Merged. If B’s tag set contains an item that is equal to one already present in A’s tag set, B’s item is

discarded.
url Merged. If B’s location set contains an item that is equal to one already present in A’s location set, B’s item

is discarded.
dirty Merged. If B’s dirty data set contain an item that is equal to one already present in A’s dirty data set, B’s

item is discarded.
clean Merged. If B’s clean data set contain an item that is equal to one already present in A’s clean data set, B’s

item is discarded.

78 Chapter 9. Data Structures

libloot Documentation, Release latest

9.8.3 Examples

name: 'Oscuro''s_Oblivion_Overhaul.esm'
req:
- 'Oblivion.esm' # Don't do this, Oblivion.esm is a master of Oscuro's_Oblivion_

→˓Overhaul.esm, so LOOT already knows it's required.
- name: 'example.esp'
display: '[Example Mod](http://www.example.com)'
condition: 'version("Oscuro''s_Oblivion_Overhaul.esm", "15.0", ==)'

tag:
- Actors.Spells
- Graphics
- Invent
- Relations
- Scripts
- Stats
- name: -Relations
condition: 'file("Mart''s Monster Mod for OOO.esm") or file("FCOM_Convergence.esm")'

msg:
- type: say
content: 'Do not clean. "Dirty" edits are intentional and required for the mod to␣

→˓function.'

9.8. Plugin 79

libloot Documentation, Release latest

80 Chapter 9. Data Structures

CHAPTER

TEN

CONDITION STRINGS

Condition strings can be used to ensure that data is only acted on by LOOT under certain circumstances. They are very
similar to boolean conditional expressions in programming languages such as Python, though more limited.

Omitting optional parentheses (see below), their EBNF grammar is:

expression ::= condition, { logical_or, compound_condition }
compound_condition ::= condition, { logical_and, condition }
condition ::= ([logical_not], function) | ([logical_not], "(", expression, ")")
logical_and ::= "and"
logical_or ::= "or"
logical_not ::= "not"

10.1 Types

filesystem_path
A double-quoted filesystem path.

file_path
A double-quoted file path.

regular_expression
A double-quoted file path, with a regular expression in place of a filename. The path must use / for directory
separators, not \. The regular expression must be written in a modified Perl syntax.

Only the filename path component will be evaluated as a regular expression. For example, given the regex
file path Meshes/Resources(1|2)/(upperclass)?table.nif, LOOT will look for a file named table.
nif or upperclasstable.nif in the Meshes\Resources(1|2) folder, rather than looking in the Meshes\
Resources1 and Meshes\Resources2 folders.

checksum
A string of hexadecimal digits representing an unsigned integer that is the data checksum of a file. LOOT displays
the checksums of plugins in its user interface after running.

version
A double-quoted string of characters representing the version of a plugin or executable. LOOT displays the
versions of plugins in its user interface after running.

comparison_operator
One of the following comparison operators.

==
Is equal to

81

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
https://docs.rs/regex/1.0.5/regex/index.html#syntax

libloot Documentation, Release latest

!=
Is not equal to

<
Is less than

>
Is greater than

<=
Is less than or equal to

>=
Is greater than or equal to

10.2 Functions

There are several conditions that can be tested for using the functions detailed below. All functions return a boolean.
For functions that take a path or regex, the argument is treated as regex if it contains any of the characters :*?|.

file(filesystem_path path)
Returns true if path is installed, and false otherwise.

file(regular_expression regex)
Returns true if a file matching regex is found, and false otherwise.

readable(filesystem_path path)
Returns true if path is a readable directory or file, and false otherwise.

This is particularly useful when writing conditions for games that are available from the Microsoft Store and/or
Xbox app, as games installed using them have executables that have heavily restricted permissions, and attempts
to read them result in permission denied errors. You can use this function to guard against such errors by calling
it before the checksum, version or product_version functions.

active(file_path path)
Returns true if path is an active plugin, and false otherwise.

active(regular_expression regex)
Returns true if an active plugin matching regex is found, and false otherwise.

many(regular_expression regex)
Returns true if more than one file matching regex is found, and false otherwise.

many_active(regular_expression regex)
Returns true if more than one active plugin matching regex is found, and false otherwise.

is_master(file_path path)
Returns true if path is an installed master plugin, and false otherwise.

checksum(file_path path, checksum expected_checksum)
Returns true if the calculated CRC-32 checksum of path matches expected_checksum, and false otherwise.
Returns false if path does not exist.

version(file_path path, version given_version, comparison_operator comparator)
Returns true if the boolean expression:

actual_version comparator given_version

(where actual version is the version read from path) holds true, and false otherwise.

82 Chapter 10. Condition Strings

libloot Documentation, Release latest

• If path is a plugin, its version is read from its description field.

• If path is not a plugin, it will be assumed to be an executable (e.g. *.exe or *.dll), and its version is
read from its File Version field.

• If path does not exist or does not have a version number, the condition evaluates to true for the !=, < and
<= comparators, i.e. a missing version is always less than the given version.

• If path is not readable or is not a plugin or an executable, an error will occur.

The supported version syntax and precedence rules are detailed in the section below.

product_version(file_path path, version given_version, comparison_operator comparator)
Returns true if the boolean expression:

actual_version comparator given_version

(where actual version is the version read from path) holds true, and false otherwise. path must be an
executable (e.g. *.exe or *.dll), and its version is read from its Product Version field.

• If path does not exist or does not have a version number, the condition evaluates to true for the !=, < and
<= comparators, i.e. a missing version is always less than the given version.

• If path is not a readable executable, an error will occur.

The supported version syntax and precedence rules are detailed in the section below.

10.2.1 Version Syntax & Comparison Rules

Version parsing and comparison is compatible with Semantic Versioning, with the following exceptions:

• Pre-release identifiers may not include hyphens (-), as they are treated as separators. For exam-
ple, a SemVer-compliant parser would treat 1.0.0-alpha.1.x-y-z.-- as ([1, 0, 0], ["alpha", 1,
"x-y-z", "--"]) but libloot treats it as ([1, 0, 0], ["alpha", 1, "x", "y", "z", "", ""]).

• Identifiers that contain non-digit characters are lowercased before being compared lexically, so that their com-
parison is case-insensitive instead of case-sensitive. For example, SemVer specifies that 1.0.0-alpha is greater
than 1.0.0-Beta, but libloot compares them with the opposite result.

These exceptions are necessary to support an extended range of real-world versions that do not conform to SemVer.
The supported extensions are:

• Leading zeroes are allowed and ignored in major, minor and patch version numbers and numeric pre-release IDs.
For example, 01.02.03 and 1.2.3 are equal.

• An arbitrary number of version numbers is allowed. To support this, the major, minor and patch version numbers
are treated as a sequence of numeric release IDs, and any subsequent version numbers are just additional release
IDs that get appended to the sequence. For example, 1.2.3 may be represented as the sequence [1, 2, 3],
and 1.2.3.4 would be represented as [1, 2, 3, 4].

If two versions with a different number of release identifiers are compared, the version with fewer release iden-
tifiers is padded with zero values until they are the same length. Each release identifier in one version is then
compared against the release identifier in the same position in the other version. For example, 1-beta is padded
to 1.0.0-beta before being compared against 1.0.1-beta, and the result is that 1.0.1-beta is greater than
1-beta.

• Release IDs may be separated by a period (.) or a comma (,). For example, 1.2.3.4 and 1,2,3,4 are equal.

• The separator between release IDs and pre-release IDs may be a hyphen (-), a space (” “), a colon (:) or an
underscore (_). For example, 1.2.3-alpha, 1.2.3 alpha, 1.2.3:alpha and 1.2.3_alpha are all equal.

10.2. Functions 83

http://semver.org/

libloot Documentation, Release latest

• Pre-release IDs may be separated by a period (.), a hyphen (-), a space (” “), a colon (:) or an underscore (_).
For example, 1.2.3-alpha.1, 1.2.3-alpha-1, 1.2.3-alpha 1, 1.2.3-alpha:1 and 1.2.3-alpha_1 are
all equal.

• Non-numeric release IDs are allowed. A non-numeric release ID may contain any character (not just ASCII
characters) that is not one of the separators listed above or a plus sign (+). For example, 0.78b.1 is allowed.

Non-numeric release IDs use the same comparison rules as non-numeric pre-release IDs, with the exception that
a non-numeric release ID is not always greater than a numeric release ID:

– If the non-numeric release ID has no leading digits, it is greater than the numeric release ID. For example,
1.A is greater than 1.1.

– If the non-numeric release ID has leading digits, they are parsed as a number, and this is compared against
the numeric release ID:

∗ If the two numbers are equal then the non-numeric release ID is greater than the numeric release ID.
For example, 1.1A is greater than 1.1.

∗ Otherwise, the result of comparing the two numbers is used as the result of comparing the two release
IDs. For example, 1.2 is greater than 1.1A and 1.1A is greater than 1.0.

• Pre-release IDs may contain any character (not just ASCII characters) that is not one of the pre-release ID sepa-
rators listed above or a plus sign (+).

• Before non-numeric IDs (release or pre-release) are compared, they are lowercased according to Unicode’s low-
ercasing rules.

• As a special case, version strings that are four comma-and-space-separated sequences of digits are interpreted as
if the comma-and-space separators were periods (.). For example, 0, 2, 0, 12 and 0.2.0.12 are equal.

10.3 Logical Operators

The and, or and not operators have their usual definitions.

10.3.1 Order of Evaluation

Condition strings are evaluated according to the usual C-style operator precedence rules, and parentheses can be used
to override these rules. For example:

function and function or not function

is evaluated as:

(function and function) or (not function)

but:

function and (function or not function)

is evaluated as:

function and (function or (not function))

84 Chapter 10. Condition Strings

libloot Documentation, Release latest

10.4 Performance

LOOT caches the results of condition evaluations. A regular expression check will still take longer than a file check
though, so use the former only when appropriate to do so.

10.4. Performance 85

libloot Documentation, Release latest

86 Chapter 10. Condition Strings

CHAPTER

ELEVEN

VERSION HISTORY

The version history of the metadata syntax is given below.

11.1 0.21 - 2023-08-30

11.1.1 Changed

• The syntax for substitution placeholders is now zero-indexed and uses curly braces instead of percentage signs.
For example, %1% %2% is now {0} {1}.

11.1.2 Removed

• Support for the LOOT file path alias. It will now be interpreted as a normal path, i.e. a file or folder named LOOT
in the game’s data path.

11.2 0.18 - 2022-02-27

11.2.1 Added

• The condition function readable(filesystem_path path), which checks if the given path is a readable
directory or file.

11.2.2 Changed

• The documentation for the version comparison condition functions has been updated to detail the supported
version syntax and semantics.

• Mentions of GitHub Flavored Markdown have been replaced with CommonMark, as LOOT now uses the latter
instead of the former.

87

libloot Documentation, Release latest

11.2.3 Fixed

• Support for not (<expression>) syntax was not properly documented.

• The documentation for the version comparison functions stated that missing versions would be treated as if they
were 0, which was not accurate.

11.3 0.17 - 2021-09-24

11.3.1 Added

• The File data structure now has a detail key that takes a string or localised content list.

• The top-level prelude key can be used to supply common data structure definitions, and in masterlists its value
is replaced by the contents of the masterlist prelude file, if present.

• Support for parsing inverted metadata conditions (not (<expression>)).

11.3.2 Changed

• The cleaning data structure’s info key has been renamed to detail for consistency.

11.4 0.16 - 2020-07-12

11.4.1 Changed

• Equality for all metadata data structures is now determined by comparison of all their fields. String comparison
is case-sensitive, with the exception of File’s name field.

11.4.2 Removed

• The enabled field has been removed from plugin metadata objects.

11.5 0.15 - 2019-11-05

11.5.1 Added

• The condition function is_master(file_path path), which checks if the given file is an installed master
plugin.

88 Chapter 11. Version History

libloot Documentation, Release latest

11.6 0.14 - 2018-12-09

11.6.1 Added

• The Group data structure now has a description key that takes a string value.

• The condition function product_version(file_path path, version given_version,
comparison_operator comparator), which checks against the Product Version field of an executable.

11.6.2 Changed

• clean and dirty metadata are now allowed in regex plugin entries.

• Location, Message, MessageContent and Tag equality comparisons are now case-sensitive.

• Regular expressions in condition strings now use a modified Perl grammar instead of a modified ECMAScript
grammar. Plugin object name fields still use the modified ECMAScript grammar for regex values. To improve
portability and avoid mistakes, it’s best to stick to using the subset of regular expression features that are common
to both grammars.

11.6.3 Removed

• The change in regular expression grammar means that the following regular expression features are no longer
supported in condition strings:

– \c<letter> control code escape sequences, use \x<hex> instead

– The \0 null escape sequence, - use \x00 instead

– The [:d:], [:w:] and [:s:] character classes, use [:digit:], [:alnum:] and [:space:] instead
respectively.

– \<number> backreferences

– (?=<subpattern>) and (?!<subpattern>) positive and negative lookahead

11.7 0.13 - 2018-04-02

11.7.1 Added

• The Group data structure.

• The groups list to the root of the metadata file format.

• The group key to the plugin data structure.

11.6. 0.14 - 2018-12-09 89

https://docs.rs/regex/1.0.5/regex/index.html#syntax

libloot Documentation, Release latest

11.7.2 Removed

• The priority field from the plugin data structure.

• The global_priority field from the plugin data structure.

11.8 0.10 - 2016-11-06

11.8.1 Added

• The clean key to the plugin data structure.

• The global_priority field to the plugin data structure.

• The many_active() condition function.

• The info key to the cleaning data structure.

11.8.2 Changed

• Renamed the str key in the localised content data structure to text .

• The priority field of the plugin data structure now stores values between -127 and 127 inclusive.

• Regular expressions no longer accept \ as a directory separator: / must now be used.

• The file() condition function now also accepts a regular expression.

• The active() condition function to also accept a regular expression.

• Renamed the dirty info data structure to the cleaning data structure.

11.8.3 Removed

• The regex() condition function, as it has been obsoleted by the file() function’s new regex support.

11.9 0.8 - 2015-07-22

11.9.1 Added

• The name key to the location data structure.

• The many("regex") condition function.

• The documentation now defines the equality criteria for all of the metadata syntax’s non-standard data structures.

90 Chapter 11. Version History

libloot Documentation, Release latest

11.9.2 Changed

• Detection of regular expression plugin entries. Previously, a plugin entry was treated as having a regular expres-
sion filename if the filename ended with \.esp or \.esp . Now, a plugin entry is treated as having a regular
expression filename if the filename contains one or more of :*?| .

11.9.3 Removed

• Removed the ver key in the location data structure.

11.9.4 Fixed

• The documentation gave the values of the after , req , inc , tag , url and dirty keys as lists, when they have
always been sets.

11.10 0.7 - 2015-05-20

11.10.1 Added

• The message string substitution key, i.e. sub , in the message data structure.

• Support for YAML merge keys, i.e. << .

11.10.2 Changed

• Messages may now be formatted using most of GitHub Flavored Markdown, minus the GitHub-specific features
(like @mentions, issue/repo linking and emoji).

11.11 0.6 - 2014-07-05

No changes.

11.12 0.5 - 2014-03-31

Initial release.

11.10. 0.7 - 2015-05-20 91

libloot Documentation, Release latest

92 Chapter 11. Version History

CHAPTER

TWELVE

COPYRIGHT NOTICE

LOOT and its API are distributed under the GNU General Public License v3.0. The documentation is distributed under
the GNU Free Documentation License v1.3. The full texts of both licenses are included in Copyright License Texts.

While the GPL license allows anyone to make derivative works of LOOT, the LOOT Team encourages those thinking
of doing so to first discuss their reasoning for such an endeavour with the Team. It may be that what the derivative work
would do differently is already planned for a future version of LOOT or would be happily integrated into LOOT, thus
avoiding any extra effort by others.

LOOT has been specifically designed to prevent it being locked into the LOOT Team’s official masterlist repositories.
Nevertheless, the LOOT Team appeals to the community to avoid the distribution of unofficial masterlists, as this would
only hamper the effort to create one set of stores for load order information. Any issues with a masterlist are best brought
to the attention of the LOOT Team so that they may be remedied.

GNU Free Documentation License Version 1.3 Notice:

Copyright (C) 2012—2016 WrinklyNinja

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in Copyright License Texts.

93

libloot Documentation, Release latest

94 Chapter 12. Copyright Notice

CHAPTER

THIRTEEN

COPYRIGHT LICENSE TEXTS

Contents

• Copyright License Texts

– Boost

– libloot, esplugin & Libloadorder

– libloot Documentation

– spdlog

– yaml-cpp

13.1 Boost

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

95

libloot Documentation, Release latest

13.2 libloot, esplugin & Libloadorder

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to

(continues on next page)

96 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other

(continues on next page)

13.2. libloot, esplugin & Libloadorder 97

libloot Documentation, Release latest

(continued from previous page)

parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that

(continues on next page)

98 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

(continues on next page)

13.2. libloot, esplugin & Libloadorder 99

libloot Documentation, Release latest

(continued from previous page)

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

(continues on next page)

100 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent

(continues on next page)

13.2. libloot, esplugin & Libloadorder 101

libloot Documentation, Release latest

(continued from previous page)

the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

(continues on next page)

102 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under

(continues on next page)

13.2. libloot, esplugin & Libloadorder 103

libloot Documentation, Release latest

(continued from previous page)

this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

(continues on next page)

104 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties

(continues on next page)

13.2. libloot, esplugin & Libloadorder 105

libloot Documentation, Release latest

(continued from previous page)

receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to

(continues on next page)

106 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

(continues on next page)

13.2. libloot, esplugin & Libloadorder 107

libloot Documentation, Release latest

(continued from previous page)

END OF TERMS AND CONDITIONS

13.3 libloot Documentation

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you

(continues on next page)

108 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the

(continues on next page)

13.3. libloot Documentation 109

libloot Documentation, Release latest

(continued from previous page)

machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify

(continues on next page)

110 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

(continues on next page)

13.3. libloot Documentation 111

libloot Documentation, Release latest

(continued from previous page)

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of

(continues on next page)

112 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

(continues on next page)

13.3. libloot Documentation 113

libloot Documentation, Release latest

(continued from previous page)

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally

(continues on next page)

114 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license

(continues on next page)

13.3. libloot Documentation 115

libloot Documentation, Release latest

(continued from previous page)

published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

13.4 spdlog

The MIT License (MIT)

Copyright (c) 2016 Gabi Melman.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

13.5 yaml-cpp

Copyright (c) 2008 Jesse Beder.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

(continues on next page)

116 Chapter 13. Copyright License Texts

libloot Documentation, Release latest

(continued from previous page)

copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

13.5. yaml-cpp 117

libloot Documentation, Release latest

118 Chapter 13. Copyright License Texts

INDEX

L
loot::ConditionalMetadata (C++ class), 19
loot::ConditionalMetadata::ConditionalMetadata

(C++ function), 19
loot::ConditionalMetadata::GetCondition

(C++ function), 19
loot::ConditionalMetadata::IsConditional

(C++ function), 19
loot::ConditionSyntaxError (C++ class), 28
loot::CreateGameHandle (C++ function), 11
loot::CyclicInteractionError (C++ class), 28
loot::CyclicInteractionError::CyclicInteractionError

(C++ function), 28
loot::CyclicInteractionError::GetCycle (C++

function), 28
loot::DatabaseInterface (C++ class), 12
loot::DatabaseInterface::DiscardAllUserMetadata

(C++ function), 15
loot::DatabaseInterface::DiscardPluginUserMetadata

(C++ function), 15
loot::DatabaseInterface::GetGeneralMessages

(C++ function), 13
loot::DatabaseInterface::GetGroups (C++ func-

tion), 13
loot::DatabaseInterface::GetGroupsPath (C++

function), 14
loot::DatabaseInterface::GetKnownBashTags

(C++ function), 13
loot::DatabaseInterface::GetPluginMetadata

(C++ function), 14
loot::DatabaseInterface::GetPluginUserMetadata

(C++ function), 14
loot::DatabaseInterface::GetUserGroups (C++

function), 14
loot::DatabaseInterface::LoadLists (C++ func-

tion), 13
loot::DatabaseInterface::SetPluginUserMetadata

(C++ function), 15
loot::DatabaseInterface::SetUserGroups (C++

function), 14
loot::DatabaseInterface::WriteMinimalList

(C++ function), 13

loot::DatabaseInterface::WriteUserMetadata
(C++ function), 13

loot::EdgeType (C++ enum), 9
loot::EdgeType::assetOverlap (C++ enumerator),

10
loot::EdgeType::hardcoded (C++ enumerator), 9
loot::EdgeType::master (C++ enumerator), 10
loot::EdgeType::masterFlag (C++ enumerator), 9
loot::EdgeType::masterlistGroup (C++ enumera-

tor), 10
loot::EdgeType::masterlistLoadAfter (C++ enu-

merator), 10
loot::EdgeType::masterlistRequirement (C++

enumerator), 10
loot::EdgeType::recordOverlap (C++ enumera-

tor), 10
loot::EdgeType::tieBreak (C++ enumerator), 10
loot::EdgeType::userGroup (C++ enumerator), 10
loot::EdgeType::userLoadAfter (C++ enumera-

tor), 10
loot::EdgeType::userRequirement (C++ enumera-

tor), 10
loot::File (C++ class), 20
loot::File::File (C++ function), 20
loot::File::GetDetail (C++ function), 20
loot::File::GetDisplayName (C++ function), 20
loot::File::GetName (C++ function), 20
loot::FileAccessError (C++ class), 28
loot::Filename (C++ class), 19
loot::Filename::Filename (C++ function), 20
loot::Filename::operator std::string (C++

function), 20
loot::GameInterface (C++ class), 15
loot::GameInterface::GetActivePluginsFilePath

(C++ function), 17
loot::GameInterface::GetAdditionalDataPaths

(C++ function), 17
loot::GameInterface::GetDatabase (C++ func-

tion), 15
loot::GameInterface::GetLoadedPlugins (C++

function), 16
loot::GameInterface::GetLoadOrder (C++ func-

119

libloot Documentation, Release latest

tion), 17
loot::GameInterface::GetPlugin (C++ function),

16
loot::GameInterface::GetType (C++ function), 17
loot::GameInterface::IdentifyMainMasterFile

(C++ function), 16
loot::GameInterface::IsLoadOrderAmbiguous

(C++ function), 16
loot::GameInterface::IsPluginActive (C++

function), 17
loot::GameInterface::IsValidPlugin (C++ func-

tion), 15
loot::GameInterface::LoadCurrentLoadOrderState

(C++ function), 16
loot::GameInterface::LoadPlugins (C++ func-

tion), 15
loot::GameInterface::SetAdditionalDataPaths

(C++ function), 17
loot::GameInterface::SetLoadOrder (C++ func-

tion), 17
loot::GameInterface::SortPlugins (C++ func-

tion), 16
loot::GameType (C++ enum), 10
loot::GameType::fo3 (C++ enumerator), 10
loot::GameType::fo4 (C++ enumerator), 10
loot::GameType::fo4vr (C++ enumerator), 10
loot::GameType::fonv (C++ enumerator), 10
loot::GameType::starfield (C++ enumerator), 10
loot::GameType::tes3 (C++ enumerator), 10
loot::GameType::tes4 (C++ enumerator), 10
loot::GameType::tes5 (C++ enumerator), 10
loot::GameType::tes5se (C++ enumerator), 10
loot::GameType::tes5vr (C++ enumerator), 10
loot::GetLiblootRevision (C++ function), 12
loot::GetLiblootVersion (C++ function), 12
loot::Group (C++ class), 20
loot::Group::DEFAULT_NAME (C++ member), 21
loot::Group::GetAfterGroups (C++ function), 21
loot::Group::GetDescription (C++ function), 21
loot::Group::GetName (C++ function), 21
loot::Group::Group (C++ function), 21
loot::IsCompatible (C++ function), 11
loot::libloadorder_category (C++ function), 29
loot::LIBLOOT_VERSION_MAJOR (C++ member), 9
loot::LIBLOOT_VERSION_MINOR (C++ member), 9
loot::LIBLOOT_VERSION_PATCH (C++ member), 9
loot::Location (C++ class), 21
loot::Location::GetName (C++ function), 22
loot::Location::GetURL (C++ function), 21
loot::Location::Location (C++ function), 21
loot::LogLevel (C++ enum), 10
loot::LogLevel::debug (C++ enumerator), 11
loot::LogLevel::error (C++ enumerator), 11
loot::LogLevel::fatal (C++ enumerator), 11

loot::LogLevel::info (C++ enumerator), 11
loot::LogLevel::trace (C++ enumerator), 11
loot::LogLevel::warning (C++ enumerator), 11
loot::Message (C++ class), 22
loot::Message::GetContent (C++ function), 23
loot::Message::GetType (C++ function), 23
loot::Message::Message (C++ function), 23
loot::MessageContent (C++ class), 22
loot::MessageContent::DEFAULT_LANGUAGE (C++

member), 22
loot::MessageContent::GetLanguage (C++ func-

tion), 22
loot::MessageContent::GetText (C++ function), 22
loot::MessageContent::MessageContent (C++

function), 22
loot::MessageType (C++ enum), 11
loot::MessageType::error (C++ enumerator), 11
loot::MessageType::say (C++ enumerator), 11
loot::MessageType::warn (C++ enumerator), 11
loot::PluginCleaningData (C++ class), 23
loot::PluginCleaningData::GetCleaningUtility

(C++ function), 24
loot::PluginCleaningData::GetCRC (C++ func-

tion), 24
loot::PluginCleaningData::GetDeletedNavmeshCount

(C++ function), 24
loot::PluginCleaningData::GetDeletedReferenceCount

(C++ function), 24
loot::PluginCleaningData::GetDetail (C++

function), 24
loot::PluginCleaningData::GetITMCount (C++

function), 24
loot::PluginCleaningData::PluginCleaningData

(C++ function), 23, 24
loot::PluginInterface (C++ class), 17
loot::PluginInterface::DoRecordsOverlap

(C++ function), 19
loot::PluginInterface::GetBashTags (C++ func-

tion), 18
loot::PluginInterface::GetCRC (C++ function), 18
loot::PluginInterface::GetHeaderVersion

(C++ function), 18
loot::PluginInterface::GetMasters (C++ func-

tion), 18
loot::PluginInterface::GetName (C++ function),

18
loot::PluginInterface::GetVersion (C++ func-

tion), 18
loot::PluginInterface::IsEmpty (C++ function),

18
loot::PluginInterface::IsLightPlugin (C++

function), 18
loot::PluginInterface::IsMaster (C++ function),

18

120 Index

libloot Documentation, Release latest

loot::PluginInterface::IsOverridePlugin
(C++ function), 18

loot::PluginInterface::IsValidAsLightPlugin
(C++ function), 18

loot::PluginInterface::IsValidAsOverridePlugin
(C++ function), 18

loot::PluginInterface::LoadsArchive (C++
function), 19

loot::PluginMetadata (C++ class), 24
loot::PluginMetadata::AsYaml (C++ function), 27
loot::PluginMetadata::GetCleanInfo (C++ func-

tion), 25
loot::PluginMetadata::GetDirtyInfo (C++ func-

tion), 25
loot::PluginMetadata::GetGroup (C++ function),

25
loot::PluginMetadata::GetIncompatibilities

(C++ function), 25
loot::PluginMetadata::GetLoadAfterFiles

(C++ function), 25
loot::PluginMetadata::GetLocations (C++ func-

tion), 26
loot::PluginMetadata::GetMessages (C++ func-

tion), 25
loot::PluginMetadata::GetName (C++ function), 25
loot::PluginMetadata::GetRequirements (C++

function), 25
loot::PluginMetadata::GetTags (C++ function), 25
loot::PluginMetadata::HasNameOnly (C++ func-

tion), 26
loot::PluginMetadata::IsRegexPlugin (C++

function), 26
loot::PluginMetadata::MergeMetadata (C++

function), 25
loot::PluginMetadata::NameMatches (C++ func-

tion), 27
loot::PluginMetadata::PluginMetadata (C++

function), 25
loot::PluginMetadata::SetCleanInfo (C++ func-

tion), 26
loot::PluginMetadata::SetDirtyInfo (C++ func-

tion), 26
loot::PluginMetadata::SetGroup (C++ function),

26
loot::PluginMetadata::SetIncompatibilities

(C++ function), 26
loot::PluginMetadata::SetLoadAfterFiles

(C++ function), 26
loot::PluginMetadata::SetLocations (C++ func-

tion), 26
loot::PluginMetadata::SetMessages (C++ func-

tion), 26
loot::PluginMetadata::SetRequirements (C++

function), 26

loot::PluginMetadata::SetTags (C++ function), 26
loot::PluginMetadata::UnsetGroup (C++ func-

tion), 26
loot::SelectMessageContent (C++ function), 12
loot::SetLoggingCallback (C++ function), 11
loot::Tag (C++ class), 27
loot::Tag::GetName (C++ function), 27
loot::Tag::IsAddition (C++ function), 27
loot::Tag::Tag (C++ function), 27
loot::UndefinedGroupError (C++ class), 28
loot::UndefinedGroupError::GetGroupName

(C++ function), 29
loot::UndefinedGroupError::UndefinedGroupError

(C++ function), 29
loot::Vertex (C++ class), 27
loot::Vertex::GetName (C++ function), 28
loot::Vertex::GetTypeOfEdgeToNextVertex

(C++ function), 28
loot::Vertex::Vertex (C++ function), 28

Index 121

	Introduction
	Miscellaneous Details
	String Encoding
	Language Codes
	Errors
	Metadata Files
	Caching
	Performance

	LOOT’s Sorting Algorithm
	Load plugin data
	Create plugin graph vertices
	Create plugin graph edges
	Hardcoded edges
	Group edges
	Overlap edges
	Tie-break edges
	Pinning vertex positions

	Topologically sort the plugin graphs
	Combine the two load orders

	API Reference
	Constants
	Enumerations
	Functions
	Interfaces
	Classes
	Exceptions
	Error Categories

	Credits
	Version History
	0.22.2 - 2023-11-25
	Fixed
	Changed

	0.22.1 - 2023-10-06
	Changed
	Fixed

	0.22.0 - 2023-09-29
	Added
	Fixed

	0.21.0 - 2023-09-13
	Added
	Changed
	Fixed
	Removed

	0.19.4 - 2023-05-06
	Added
	Changed

	0.19.3 - 2023-03-18
	Added
	Fixed
	Changed

	0.19.2 - 2023-01-13
	Fixed
	Changed

	0.19.1 - 2023-01-09
	Fixed

	0.19.0 - 2023-01-07
	Added
	Fixed
	Changed
	Removed

	0.18.3 - 2022-12-13
	Fixed
	Changed

	0.18.2 - 2022-10-11
	Fixed
	Changed

	0.18.1 - 2022-10-01
	Fixed
	Changed

	0.18.0 - 2022-02-27
	Added
	Fixed
	Changed
	Removed

	0.17.3 - 2022-01-02
	Added
	Changed

	0.17.2 - 2021-12-24
	Fixed
	Changed

	0.17.1 - 2021-11-13
	Fixed

	0.17.0 - 2021-09-24
	Added
	Changed
	Removed

	0.16.3 - 2021-05-06
	Added
	Changed
	Fixed
	Deprecated

	0.16.2 - 2021-02-13
	Changed

	0.16.1 - 2020-08-22
	Fixed

	0.16.0 - 2020-07-12
	Added
	Changed
	Removed
	Fixed

	0.15.2 - 2020-06-14
	Changed
	Fixed

	0.15.1 - 2019-12-07
	Changed

	0.15.0 - 2019-11-05
	Changed
	Removed
	Fixed

	0.14.10 - 2019-09-06
	Changed

	0.14.9 - 2019-07-23
	Fixed
	Changed

	0.14.8 - 2019-06-30
	Fixed
	Changed

	0.14.7 - 2019-06-13
	Fixed
	Changed

	0.14.6 - 2019-04-24
	Added
	Changed
	Fixed

	0.14.5 - 2019-02-27
	Changed
	Fixed

	0.14.4 - 2019-01-27
	Added

	0.14.3 - 2019-01-27
	Changed
	Fixed

	0.14.2 - 2019-01-20
	Changed
	Fixed

	0.14.1 - 2018-12-23
	Changed
	Fixed

	0.14.0 - 2018-12-09
	Added
	Changed
	Removed
	Fixed

	0.13.8 - 2018-09-24
	Fixed

	0.13.7 - 2018-09-10
	Changed
	Fixed

	0.13.6 - 2018-06-29
	Changed

	0.13.5 - 2018-06-02
	Changed

	0.13.4 - 2018-06-02
	Fixed

	0.13.3 - 2018-05-26
	Changed
	Fixed

	0.13.2 - 2018-04-29
	Changed
	Fixed

	0.13.1 - 2018-04-09
	Added
	Changed

	0.13.0 - 2018-04-02
	Added
	Changed
	Removed
	Fixed

	0.12.5 - 2018-02-17
	Changed

	0.12.4 - 2018-02-17
	Fixed
	Changed

	0.12.3 - 2018-02-04
	Added
	Fixed
	Changed

	0.12.2 - 2017-12-24
	Fixed
	Changed

	0.12.1 - 2017-11-23
	Added
	Changed

	0.12.0 - 2017-11-03
	Added
	Changed
	Removed
	Fixed

	0.11.1 - 2017-06-19
	Fixed

	0.11.0 - 2017-05-13
	Added
	Changed
	Removed
	Fixed

	0.10.3 - 2017-01-08
	Added
	Changed
	Fixed

	0.10.2 - 2016-12-03
	Changed
	Fixed

	0.10.1 - 2016-11-12
	0.10.0 - 2016-11-06
	Added
	Changed
	Removed
	Fixed

	0.9.2 - 2016-08-03
	Changed
	Fixed

	0.9.1 - 2016-06-23
	0.9.0 - 2016-05-21
	Changed
	Removed

	0.8.1 - 2015-09-27
	Changed
	Fixed

	0.8.0 - 2015-07-22
	Added
	Changed
	Fixed

	0.7.1 - 2015-06-22
	Fixed

	0.7.0 - 2015-05-20

	Introduction
	Metadata File Structure
	Example

	Data Structures
	Tag
	Map Form
	Scalar Form
	Equality
	Examples

	File
	Map Form
	Scalar Form
	Equality
	Examples

	Group
	Merging Groups
	The default Group
	Equality
	Examples

	Localised Content
	Equality

	Message
	Language Support
	Equality
	Examples

	Location
	Map Form
	Scalar Form
	Equality
	Examples

	Cleaning Data
	Equality
	Examples

	Plugin
	Equality
	Merging Behaviour
	Examples

	Condition Strings
	Types
	Functions
	Version Syntax & Comparison Rules

	Logical Operators
	Order of Evaluation

	Performance

	Version History
	0.21 - 2023-08-30
	Changed
	Removed

	0.18 - 2022-02-27
	Added
	Changed
	Fixed

	0.17 - 2021-09-24
	Added
	Changed

	0.16 - 2020-07-12
	Changed
	Removed

	0.15 - 2019-11-05
	Added

	0.14 - 2018-12-09
	Added
	Changed
	Removed

	0.13 - 2018-04-02
	Added
	Removed

	0.10 - 2016-11-06
	Added
	Changed
	Removed

	0.8 - 2015-07-22
	Added
	Changed
	Removed
	Fixed

	0.7 - 2015-05-20
	Added
	Changed

	0.6 - 2014-07-05
	0.5 - 2014-03-31

	Copyright Notice
	Copyright License Texts
	Boost
	libloot, esplugin & Libloadorder
	libloot Documentation
	spdlog
	yaml-cpp

	Index

